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Topics we will cover
● Track I

○ Raw versus residualized change
○ Path Diagrams
○ Autoregressive Cross-Lag Panel Models + 

extensions
○ Latent Curve Model

■ Fixed and random effects

● Track II
○ Latent Curve Models review + extensions
○ Multivariate LCMs + extensions
○ Latent Change Score Models

■ Univariate
■ Multivariate

But which model do 
we pick??

We have data:



Introduction to Longitudinal Structural 
Equation Modeling: Theory

Track I



Different Kinds of Change over Time

Consider y1 and y2 as repeated measures

1. Residualized Change

● Differences in residuals (conditioning on prior information)

2. Raw Score Change

● Difference scores
● Smooth trajectories
● Latent change scores

○ A special case of both approaches



Different Kinds of Change over Time

Residualized Change

● Change in value of y2 beyond what is expected based on y1
○ Can use  a regression expression to predict y2 from y1

○ y2i = 𝜷0 + 𝜷1y1i + εi

○ ŷ2i = 𝜷0 + 𝜷1y1i

○ y2i = ŷ2i + εi

● So residualized change is εi = y2i - ŷ2i
○ i.e., change from the model’s expectation

● Used in ANCOVA and ARCL models



Different Kinds of Change over Time

Residualized Change

● Pros
○ y1 and y2 do not even have to be the same measure (remember it’s just a regression)

■ May be important in contexts of measurement non-invariance (a fun term that we won’t 
have time to go into, but bother Ethan or John about it sometime if you suffer from 
insomnia (why do we love what hurts us?))

○ Can help control for background characteristic differences in some contexts

● Cons
○ Inconsistent with most longitudinal theories which concern absolute change (i.e., trajectories)
○ Regressions link pairs of timepoints at a time rather than the full timeseries

■ Parameter rich models



Different Kinds of Change over Time

Raw Score Change

● Quite literally based on the difference in magnitude between  y2 and y1
○ di = y2i - y1i 

● Forms the basis of most longitudinal models
○ Paired t-test (which is barely a longitudinal model), repeated measures ANOVA, growth 

models, latent change score models
■ “two waves of data are better than one, but maybe not much better” (Rogosa et al., 1982)

○ For most of these models we don’t directly compute difference scores, but change on the raw 
metric is the unit of analysis



Different Kinds of Change over Time

Raw Score Change

● Pros
○ Intuitive and what you would likely think of in terms of longitudinal modeling 

● Cons
○ If there is measurement error on y1 and/or y2 (and there will be; heartbreak #1 of the day), that 

will get compounded in the difference score
○ Unreliability will decrease the power of our model test of change (heartbreak #2)
○ Fair warning: we’ll generally accept these limitations for reasons (we’ll explain when you’re 

older; in approx 20 minutes)



Different Kinds of Change over Time

● Of course, people have calm, rational disagreements about this
○ Just kidding, quantitative methodologists are dramatic, especially in the 20th century

● Cronbach & Furby (1970);  (yes that Cronbach)
○ “...they [raw change scores] are still employed, even by some otherwise sophisticated investigators.”

● Willett (1997)
○ “When discussing residualized change scores, methodologists disagree as to what exactly is being estimated, how well it 

is estimated, and how it can be interpreted.” 
○ So that’s all…

● Lord’s paradox (as solved by Judea Pearl, 2016)



Different Kinds of Change over Time: Readings

● Cronbach, L. J., & Furby, L. (1970). How we should measure" change": Or should we?. Psychological Bulletin, 74(1), 
68.

● Willett, J. B. (1997). Measuring change: What individual growth modeling buys you. Change and Development: 
Issues of theory, method, and application, 213, 243.

● Rausch, J.R., Maxwell, S.E. & Kelley, K. (2003). Analytic methods for questions pertaining to a randomized pretest, 
posttest, follow-up design. Journal of Clinical and Consulting Psychology, 32, 467-486. 

● Rogosa, D. R. (1995). Myths and methods: "Myths about longitudinal research," plus supplemental questions. In J. 
M. Gottman (Ed.) The Analysis of Change (pp. 3-65). Hillsdale, New Jersey: Lawrence Erlbaum. 

● Willett, J.B., Singer, J.D., and Martin, N.C. (1998). The design and analysis of longitudinal studies of development 
and psychopathology in context: Statistical models and methodological recommendations. Development and 
Psychopathology, 10, 395-426. 

● Hendrix, L. J., Carter, M. W., & Hintze, J. L. (1979). A comparison of five statistical methods for analyzing 
pretest–posttest designs. Journal of Experimental Education, 47, 96–102 



Equations and Path Diagrams in SEM

● SEM can be entirely expressed in terms of equations of course, but a handy 
visual shortcut has been developed to represent models that is often more 
intuitive for users

○ The important thing to realize though is that the visuals are isomorphic with the underlying 
equations, meaning that a full diagram implies all the same information as the equations 
(although there are some shortcuts we’ll take to reduce visual clutter)

● We’ll talk about 2 broad types of path diagrams that we’ll see variations of 
○ Path models (e.g., observed mediation analysis, autoregressive cross-lag models)
○ Factor models (e.g., growth models being a special case)



Equations and Path Diagrams in SEM

● If we consider a simple 2-predictor regression, the equation is as follows:
○ yi = 𝜷0 + 𝜷1x1i + 𝜷2x2i + εi with a normally distributed error term, εi ~ N(0, 𝜎2)
○ In SEM, we generally use slightly different notations

■ Intercepts: 𝜶
■ Regression coefficients of y’s on x’s: 𝜸
■ Regression coefficients of y’s on other y’s: 𝜷
■ Residuals: 𝜁 with variance 𝛹

○ So now we express the above as: yi = 𝜶 + 𝜸1x1i + 𝜸2x2i + 𝜁i where 𝜁i ~ N(0, 𝛹)



Equations and Path Diagrams in SEM

● However we can represent yi = 𝜶 + 𝜸1x1i + 𝜸2x2i + 𝜁i where 𝜁i ~ N(0, 𝛹) visually too

● Diagram conventions
○ Observed variables are rectangles
○ Latent variables (including residuals, remember we don’t directly observe them) are circles
○ Single-headed arrows are regression coefficients and double-headed arrows are covariances

x1i

x2i

y1i

��

𝜁i ��

𝛾11

𝛾12



Equations and Path Diagrams in SEM

● Of course path models are usually more complicated than simple regression and 
allow for multiple dependent (y) variables
○ A simple case below:

C’est voilà: 
Mediation

x1i

x2i

y1i

𝛼1

𝜁1i 𝜓11

𝛾11

𝛾12

y2i

𝛼2

𝛽21

𝜁2i 𝜓22

𝛾21

y1i = 𝜶1 + 𝜸11x1i + 𝜸12x2i + 𝜁1i

y2i = 𝜶2 + 𝜸21x1i + 𝜷21y1i + 𝜁2i

Model Equations:



Equations and Path Diagrams in SEM

● Very often we drop alphas, psi’s and gammas/betas and imply their existence
○ This would be to display your theoretical model; you could also put model estimates in place of 

the parameters in the results

x1i

x2i

y1i

𝜁1i

y2i

𝜁2i



Equations and Factor Diagrams in SEM

A factor in SEM represents a latent variable

A latent variable is some quantity that we infer from a set of observations.

Examples you’ve seen in this workshop and in the wild:

● Literally any computed score from a questionnaire
● The slope and intercept in a MLM growth model

● In MLM, we’re focus on the population mean of these (i.e., the fixed effects)
● But we get the variance of the latent variables as the SD of the random effects

We’ll cover the SEM growth model later, but it’s really a restricted (i.e., constrained) form 
of a factor model.



Equations and Factor Diagrams in SEM

● The equation (bold lowercase terms are vectors; bold uppercase are matrices)
○ yi =  𝚲𝛈i + 𝝴i 

● Remember that we do not observe 𝛈, but can infer its existence if we assume 
this model

𝛈1 

y1 y2 y3 y4

ε1 ε2 ε3 ε4

𝜆11 𝜆21 𝜆31 𝜆41



Equations and Factor Diagrams in SEM

The scale score example

● When you take the average of a set of items and call that “Internalizing”, you’re 
creating a sort of latent variable model with some very strong constraints.

○ It’s a formative rather than reflective model
● Every item is equally formative of the latent variable.
● Every item and the construct is measured without any error.

Int. 

1 1 1 1

y1 y2 y3 y4

0



Latent variables (in SEM, MLM, and other contexts) allow us to model the true 
score of a variable free from measurement error.

This is awesome.

Again, feel free to bug us about measurement anytime.

Equations and Factor Diagrams in SEM



Equations and Diagrams: Readings

● Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley 

● Bollen, K. A., & Davis, W. R. (2009). Two rules of identification for structural equation models. Structural 
Equation Modeling: A Multidisciplinary Journal, 16, 523-536. 

● MacCallum, R.C., & Austin, J.T. (2000). Applications of structural equation modeling in psychological 
research. Annual Review of Psychology, 51, 201-226. 

● Raykov, T., & Marcoulides, G.A. (2006). A First Course in Structural Equation Modeling, Second Edition. 
Mahwah, NJ: Lawrence Earlbaum & Associates. 



Autoregressive Cross-Lag Panel Models: Theory

● We saw before that residualized change is just a form of regression of a 
given measure on itself at a previous time

○ With SEM’s ability to have multiple dependent variables, we can string several repeated 
measures together using a path model

y1 y2 y3 y4

Note that we simplify 
the path model 

further by having 
orphaned arrows 

indicate the 
residuals.



Autoregressive Cross-Lag Panel Models: Theory

● Of course this is somewhat boring with a single variable
○ Raw change scores are often univariate (i.e., using a change score as the outcome of another 

variable), but ARCLs are almost never
○ Can test how two variables “travel together” over time

■ autoregressive and cross-lagged effects

One of the ONLY times 
quantitative methods 

people name something 
exactly what it is. Of course 

they also call these 
cross-lag panel models

z1 z2 z3 z4

y1 y2 y3 y4



Autoregressive Cross-Lag Panel Models: Path Diagram

● Autoregressive Effects estimate the stability of a construct across time
○ Estimated separately for each construct (orange for y’s, green for z’s)
○ And for each lag, unless you impose equality constraints

z1 z2 z3 z4

y1 y2 y3 y4



Autoregressive Cross-Lag Panel Models: Path Diagram

● Cross-Lag Effects estimate the prospective prediction of y on z (orange), net 
the effect of y at the previous time point

○ And vice versa for z on y (green)
● Within time measures (or their residuals) are allowed to correlate (blue)

z1 z2 z3 z4

y1 y2 y3 y4



Autoregressive Cross-Lag Panel Models: Expansions

● Can include 
○ additional repeated measures and look at chains of regression across time 
○ exogenous predictors
○ Higher order lagged regression paths (e.g., lag-2)

● Instead of observations at each time point, could 
model a latent variable

○ VERY parameter intensive

● Can impose equality constraints to reduce parameter overload (a technical 
term)



Autoregressive Cross-Lag Panel Models: Limitations & Extensions

● Without equality constraints, ARCLs are highly parameterized models
○ Difficult to interpret change over time
○ No best practices for ordering of equality constraints

● Does not model change in means at all (can’t get a trajectory out of these models)

● Fails to disaggregate within-person change from between person differences
○ There is a fix (known as RI-ARCL [aka RI-CLPM] or more generally, structured residual growth 

models)
○ See more in Track II

● Probably don’t ever use a standard ARCL model. Please.



Random Intercept ARCL model

● Never use the standard ARCL 
model (aka CLPM).

● Use this model, the RI-ARCL 
(RI-CLPM) which separates out 
between and within person 
variance.

● You can easily specify and fit this 
model with the riclpm package 
(handles more than 2 vars!)

● Here’s a more in-depth tutorial: 
https://johnflournoy.science/2017/1
0/20/riclpm-lavaan-demo/

https://johnflournoy.science/riclpmr/
https://johnflournoy.science/2017/10/20/riclpm-lavaan-demo/
https://johnflournoy.science/2017/10/20/riclpm-lavaan-demo/


Autoregressive Cross-Lag Panel Models: Readings

● Cole, D.A., & Maxwell, S.E. (2003). Testing mediational models with longitudinal data: questions and tips in 
the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558-577. 

● Rogosa, D., & Willett, J. B. (1985). Satisfying a simplex structure is simpler than it should be. Journal of 
Educational and Behavioral Statistics, 10, 99-107. 

● Maxwell, S.E., Cole, D.A., & Mitchell, M.A. (2011). Bias in cross-sectional analyses of longitudinal 
mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral 
Research, 46, 816-841. 

● Curran, P.J., & Willoughby, M.T. (2003). Implications of latent trajectory models for the study of 
developmental psychopathology. Development and Psychopathology, 15, 581-612 

● Hamaker, E.L., Kuiper, R.M., & Grasman, R.P. (2015). A critique of the cross-lagged panel model. 
Psychological Methods, 20, 102-116. 



Latent Curve Model: Theory

● Latent variables are all around (Bollen, 2002)
○ Constructs that we do not (or cannot) directly measure but believe to exist

■ Actually, we cannot directly measure anything
● Do you remember high-school physics, measuring everything 3 times?

○ Depression, cognitive control, etc

Seriously, read everything 
this man writes about SEM

● In the context of growth, we assume that people start somewhere and grow in a 
certain direction

○ BUT, we can’t actually measure true growth. We use repeated observations to infer the trajectory
○ If you’ve ever fit a random slope mixed effect growth model, you’ve already used latent variables!
○ Let’s look at some pictures



Latent Curve Model: Theory

● We have repeated measures, but how can we assess change?



Latent Curve Model: Theory

● Could connect each time point
○ This would assess change interval by interval (a collection of difference scores)
○ This assumes that each observation is measured without error, and that change is linear 

between observations. Weird, right?



Latent Curve Model: Theory
● OR, could fit a smooth line to the data

○ Creates a trajectory with a model-implied intercept and slope
○ Separates true growth from measurement error
○ Rests on the assumption of linearity (first degree)



Latent Curve Model: Theory

● Trajectories attempt to capture underlying development in repeated measures
○ Views repeated measures as composed of both true change (a smooth underlying trajectory) 

and noise (time specific deviation/residuals of the observed scores from the trajectory)

● For a broad class of basic models, is mathematically identical to the mixed 
effect growth model

○ Some good reading: Curran, 2003; Bauer, 2003
○ SEM can be expanded to much more complex models that no longer have mixed effect 

equivalents (see Track II for some examples)



Latent Curve Model: Path Diagram

● To build this trajectory, we use a highly constrained confirmatory factor model
○ For a first-degree linear model, we define two factors (1 intercept and 1 linear slope)
○ Identity of the factor is determined by setting factor loadings to specific values

● Wait, what’s it mean to identify a factor? (very briefly)
○ SEM is a system of multiple equations.
○ The number of unknown parameters must be less than the number of pieces of information 

you give the model. Setting loadings to specific values leaves fewer parameters unknown (to 
be estimated)



Latent Curve Model: Path Diagram

𝛈1 𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

yi =  𝚲𝛈i + 𝝴i 

𝛈i = 𝛂 + 𝛇i 

Measurement Equation

Structural Equation
1 1 1

1

1 2
3

Slope 
factor

Intercept 
factor

𝜁1 𝜁2 𝜓22𝜓11 𝜓12

𝛼2𝛼1

Model Implied Mean Structure

𝝻(𝛉) =  𝚲𝛂 

Model Implied Covariance 
Structure

𝚺(𝛉) =  𝚲𝚿𝚲′ + 𝚯 

This part is basically magic. 
We’re trying to reproduce the 
means and covariance of the 
observed variables with only 

the model structure….



Latent Curve Model: It’s very similar to MLM

𝛈1 𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

1 1 1

1

1 2
3

Slope 
factor

Intercept 
factor

𝜁1 𝜁2 𝜓22𝜓11 𝜓12

0

𝛼2𝛼1

This is essentially:

yij = 𝛾00 + 𝛾10TIME + 𝜈00 + 𝜈00 + 𝜀ij,

where TIME is 0, 1, 2, 3 (structured appropriately 
for the observations)

Notice that TIME is centered at the first timepoint 
implicitly in this model (see track 2 for more).



Latent Curve Model: Fixed vs Random Effects

● Just like in mixed-effect growth models we can have fixed (population mean) 
and random (individual) trajectories

○ We either set the variance of the factor to zero (fixed only) or freely estimate (fixed + random)
○ We never estimate individual trajectories, but we can compute model-implied trajectories on 

the back end

● Probably easier to see visually



Latent Curve Model: Fixed vs Random Effects

y

time

Fixed Intercept, Fixed 
Slope

You would never do this, but it’s 
basically OLS regression

y

time

Random Intercept, Fixed 
Slope

Group and individual 
trajectories are stacked on 

top of one another

Group (thick) and 
individual (thin) 

trajectories only differ in 
level (parallel lines)



Latent Curve Model: Fixed vs Random Effects

y

time

Fixed Intercept, Random 
Slope

Relatively uncommon but 
sometimes makes sense

y

time

Random Intercept, 
Random Slope

Non-parallel lines 
radiate from a 

common intercept

Individuals differ both in 
intercept and rate of 

change over time

Notice that rank order is NOT 
preserved across time



Latent Curve Model: Extensions

● Can vary the number/nature of factors
○ Intercept only, linear, quadratic, splines, latent basis

● Can bring in predictors and outcomes at the structural and measurement levels

● Multivariate Models
○ The real unique strength of SEM 
○ but see also Bayesian modeling packages like brms and languages like Stan, too

● Structuring the residuals
○ Separation of within and between person variance
○ Combines the strengths of the ARCL without many of the limitations



Latent Curve Model: Readings

● Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors 
of change. Psychological Bulletin, 116, 363-381. 

● Bollen, K.A., & Curran, P.J. (2006). Latent Curve Models: A Structural Equation Approach. Wiley Series on 
Probability and Mathematical Statistics. John Wiley & Sons: New Jersey. 

● Biesanz, J.C., Deeb-Sossa, N., Aubrecht, A.M., Bollen, K.A., & Curran, P.J. (2004). The role of coding time 
in estimating and interpreting growth curve models. Psychological Methods, 9, 30-52. 

● Neale, M. C., Aggen, S. H., Maes, H. H., Kubarych, T. S., & Schmitt, J. E. (2006). Methodological issues in 
the assessment of substance use phenotypes. Addictive Behaviors, 31, 1010-1034. 

● Curran, P. J. (2003). Have multilevel models been structural equation models all along?. Multivariate 
Behavioral Research, 38(4), 529-569.

● Curran, P. J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth curve 
modeling. Journal of Cognition and Development, 11(2), 121-136.



Introduction to Longitudinal Structural 
Equation Modeling: Theory

Track II



Latent Curve Model: A quick review

𝛈1 𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

yi =  𝚲𝛈i + 𝝴i 

𝛈i = 𝛂 + 𝛇i 

Measurement Equation

Structural Equation
1 1 1

1

1 2
3

Slope 
factor

Intercept 
factor

𝜁1 𝜁2 𝜓22𝜓11 𝜓12

𝛼2𝛼1

Model Implied Mean Structure

𝝻(𝛉) =  𝚲𝛂 

Model Implied Covariance 
Structure

𝚺(𝛉) =  𝚲𝚿𝚲′ + 𝚯 

This part is basically magic. 
We’re reproducing the means 

and covariance of the observed 
variables with only the factor 

structure…(okay so we may be 
a bit lame [really me mainly])



Latent Curve Model: A quick review

● Centering
○ Where we code time as zero influences the interpretation of the intercept and covariance of 

the latent factors, but model fit will be identical
○ In higher order models, centering will affect all but the highest-order factor

● Time structure
○ Time is coded directly into the factor loadings and in traditional LCMs we need observed 

variables at discrete time points
○ Missing data is easily accommodated but we need “sufficient” observations at each discrete 

time point 
○ Continuous time can be included with definition variables/tscore model (need other software)



Latent Curve Model: Readings

● Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors 
of change. Psychological Bulletin, 116, 363-381. 

● Bollen, K.A., & Curran, P.J. (2006). Latent Curve Models: A Structural Equation Approach. Wiley Series on 
Probability and Mathematical Statistics. John Wiley & Sons: New Jersey. 

● Biesanz, J.C., Deeb-Sossa, N., Aubrecht, A.M., Bollen, K.A., & Curran, P.J. (2004). The role of coding time 
in estimating and interpreting growth curve models. Psychological Methods, 9, 30-52. 

● Neale, M. C., Aggen, S. H., Maes, H. H., Kubarych, T. S., & Schmitt, J. E. (2006). Methodological issues in 
the assessment of substance use phenotypes. Addictive Behaviors, 31, 1010-1034. 

● Curran, P. J. (2003). Have multilevel models been structural equation models all along?. Multivariate 
Behavioral Research, 38(4), 529-569.

● Curran, P. J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth curve 
modeling. Journal of Cognition and Development, 11(2), 121-136.



Latent Curve Model: Nonlinear Trajectories

𝛈1 𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

1 11
1

2
3

Linear 
factor

Intercept 
factor

𝜁1 𝜁2 𝜓22𝜓12

𝜓11

𝛼2𝛼1

1

𝛈3

1

4
9

𝜁3 𝜓33

𝛼3

Quadratic 
factor

𝜓23
𝜓13

● Higher-order Polynomials
○ A quadratic trend can be 

imposed by squaring the linear 
factor loadings

○ Often very difficult to estimate 
a quadratic random effect

■ That’s fine, can just fix 
the variance to zero

○ Even higher polynomials can 
be specified by this is almost 
never done



Latent Curve Model: Nonlinear Trajectories

● Piecewise Splines
○ One alternative to a smooth polynomial 

is to do local curve approximation with 
discontinuous functions

○ For linear piecewise models, you need 
at least 5 timepoints (3 for each line w/ 
1 shared “knot point”)

○ Advanced applications can have 
non-linear pieces and can even 
estimate the knot point



Latent Curve Model: Nonlinear Trajectories

𝛈1 𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

1
11

1
2 3

1st Linear 
Piece

Intercept 
factor

𝜁1 𝜁2 𝜓22𝜓12

𝜓11

𝛼2𝛼1

1

𝛈3

1

𝜁3 𝜓33

𝛼3

2nd Linear 
Piece

𝜓23
𝜓13

y5

ε4

1 3 2



Latent Curve Model: Nonlinear Trajectories

● Latent Basis Models
○ When we think developmental patterns 

may be complex non-linear, we might fit 
a free-loading model

■ Allows a subset of factor loadings 
to be freely estimated

■ Can fit a complex developmental 
surface

○ Comes with some limitations
■ Can no longer interpret beta as a 

per-unit change in y
■ Random effects of “the shape”?
■ Lots of potential to overfit the data

y

time



Latent Curve Model: Nonlinear Trajectories

𝛈1 𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

1 1 1

1

1 𝜆32

Shape 
factor

Intercept 
factor

𝜁1 𝜁2 𝜓22𝜓11 𝜓12

𝛼2𝛼1

𝜆42



Nonlinear Latent Curve Model: Readings

● Biesanz, J.C., Deeb-Sossa, N., Aubrecht, A.M., Bollen, K.A., & Curran, P.J. (2004). The role of coding time 
in estimating and interpreting growth curve models. Psychological Methods, 9, 30-52. 

● Flora, D. B. (2008). Specifying piecewise latent trajectory models for longitudinal data. Structural Equation 
Modeling, 15, 513-533. 

● Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122. 

● McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual 
Review of Psychology, 60, 577-605 

● Cudeck, R., & Harring, J.R. (2007). Analysis of nonlinear patterns of change with random coefficient models. 
Annual Review of Psychology, 58, 615-637. 



LCM: Time-Invariant Covariates (TICs)

● Predictors that vary at the person level, but do not take on unique values over 
time

○ Theoretical: age at first child birth, childhood adversity, treatment group
○ Convenience: brain function at age 10, self-identified sex

● Enter the model at the latent variable level
○ TICs can predict conditional changes in the intercept and slope
○ Just a quick note: intercept and slope contain no temporal information



LCM: Time-Invariant Covariates

𝛈1

𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

yi =  𝚲𝛈i + 𝝴i 

𝛈i = 𝛂 + 𝚪𝘅i + 𝛇i 

Measurement Equation

Structural Equation

𝛼2

𝛼1

𝜁1

𝜓22

𝜓11

𝜓12 𝜁2

x1

𝛾11

𝛾21



LCM: Time-Varying Covariates (TVCs)

● Predictors that take on unique values over time
○ Truly time-specific effects: weather, treatment dosage
○ Contain person-level information too: almost everything we do (e.g., depression on stress)

● Enter the model at the manifest/observed variable level
○ TVCs predict time-specific deviations from the underlying trajectory

■ Can include contemporaneous and lagged effects
○ But also conditions trajectory on the TVC so inclusion can change the implied trajectory

■ E.g., from quadratic to linear

● TVCs should not be systematically changing over time



LCM: Time-Varying Covariates

𝛈1

𝛈2

y1 y2 y3 y4

ε1 ε2 ε3 ε4

yi =  𝚲𝛈i + 𝚱𝘇i + 𝝴i 
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Latent Curve Model with Covariates: Readings

● Curran, P.J., Bauer, D.J., & Willoughby, M.T. (2004). Testing main effects and interactions in latent curve 
analysis. Psychological Methods, 9, 220-237. 

● Bollen, K.A., & Curran, P.J. (2006). Latent Curve Models: A Structural Equation Approach. Wiley Series on 
Probability and Mathematical Statistics. John Wiley & Sons: New Jersey. 

● Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple 
linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral 
Statistics, 31(4), 437-448.

● Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in 
longitudinal models of change. Annual Review of Psychology, 62, 583-619.

● Curran, P. J., Lee, T., Howard, A. L., Lane, S., & MacCallum, R. (2012). Disaggregating within-person and 
between-person effects in multilevel and structural equation growth models. In J. R. Harring & G. R. 
Hancock (Eds.), Advances in Longitudinal Methods in the Social and Behavioral Sciences (pp. 217–253). 
IAP Information Age Publishing.



Multivariate LCM

● What if we think our TVC is systematically changing over time?
○ Or just contains person-level information
○ We can model a growth process on y and z at the same time

● A raw score change approach to modeling how two or more variables travel 
together over time

○ Co-development: Hancock & Curran, 2021



Multivariate LCM
𝛈1
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Multivariate LCM: Extensions

● Can bring in TICs to predict growth factors
○ Could do cross-construct regression among factors, but I recommend against

● Can have different function forms for each outcome
○ Example was intercept only for z, intercept + linear slope for y
○ Could have higher polynomials

● Can separate within- and between-person effects by structuring residuals



Within- vs. Between-Person Effects

● Most theories in DCN posit within-person processes
○ However often evaluated with between-person statistics
○ Even in longitudinal models (Curran & Bauer, 2011)

● TVCs that systematically vary in level confound within- and between-person 
effects

● Well developed procedures in mixed-effects models, but relatively rare to see 
in SEMs (which too be clear, is a bad thing)
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Between-person 
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to the latent factor 

structure of the 
model
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variance is isolated 

to the structured 
residual regressions



Multivariate Latent Curve Model: Readings

● Curran, P. J., & Hancock, G. R. (2021). The Challenge of Modeling Co‐Developmental Processes over 
Time. Child Development Perspectives, 15(2), 67-75.

● Hertzog, C., Lindenberger, U., Ghisletta, P., & von Oertzen, T. (2006). On the power of multivariate latent 
growth curve models to detect correlated change. Psychological Methods, 11(3), 244.

● MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser, J. K. (1997). Studying multivariate change 
using multilevel models and latent curve models. Multivariate Behavioral Research, 32(3), 215-253.

● Curran, P.J., Howard, A.L., Bainter, S.A., Lane, S.T., & McGinley J.S. (2013). The separation of 
between-person and within-person components of individual change over time: A latent curve model with 
structured residuals. Journal of Consulting and Clinical Psychology, 82, 879-894. 



Latent Change Score Model: 2 timepoints

● Can re-express a raw change score as a special case of the autoregressive 
model where we set the autoregressive parameter to 1

○ Allows us to solve for the residual in the model: 𝜁i = y2i - (1)*y1i - 𝛼i = di - 𝛼i 
○ Normally don’t have access to the residual in the model but using this approach, we can 

create a phantom variable that we can then use in the model

y1 y2

𝛈y

1

𝛈y

2

1

1

1 1



LCS Model: 2 timepoints

● To put raw change in the model, we need 
to put an additional latent factor on top of 
the phantom variables

○ This is not really latent in the way we normally 
think

● This model is an SEM expression of a 
paired samples t-test

○ Only difference is it allows missing data
○ Can build on this simple model to do more 

interesting things
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LCS Model: Univariate Latent Change

● The means of the delta latent 
variables can tell us something 
about nature of change

○ Close to zero: no change
○ Equal means: constant change
○ Unequal means: discontinuous 

change
● Can use these factors as 

predictors of other variables of 
interest

○ Highly flexible but can also be hard 
to theoretically interpret 
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LCS Model: Proportional Change

● We can regress latent change 
(𝛈Δt(t-1)) on prior level (𝛈yt)

○ Implies that the amount of change 
that occurs is in-part determined by 
prior level

● Typically 𝛽 is set equal across 
time but not necessary

● Actually identical to the ARCL 
model with AR(1) lags
○ These initial LCS models are really 

just re-parameterizing models we 
are more familiar with
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LCS Model: Trajectories

● Spoiler alert: we can also 
re-formulate the LCM as an LCS

○ But we’ll see unique LCS features 
after this

● Basically just push y into 
phantom variables

○ Phantoms don’t add model 
complexity

○ One more reformulation before we 
can get to the good stuff
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LCS Model: Trajectories

● We can also use the 𝛈Δ 
formulation

○ Intercept is now defined on only a 
single phantom variable

○ But note that the slope loadings are 
now all 1

■ Essentially sums across 
discrete change (which is 
what a smooth trajectory 
should do)

● This is the formulation that 
allows for something we haven’t 
seen before
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LCS Model: Trajectories

● Adding the proportional change 
parameter is a unique way to 
model non-linearities

○ Especially good for exponential 
trends

○ But cannot fit random effects here

● An interesting enough model, 
but the really unique case is 
when we move to the bivariate 
model with proportional change
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Multivariate Dual-Change Model y1 y2 y3 y4

z1 z2 z3 z4

1

𝛈y int

𝛈y slp

𝛈z int

𝛈z slp

𝛈y Δ21 𝛈y Δ32 𝛈y Δ43

𝛈z Δ21 𝛈z Δ32 𝛈z Δ43

𝛈y4𝛈y3𝛈y2𝛈y1

𝛈z4𝛈z3𝛈z2𝛈z1

● Here we model non-linear 
changes within each 
construct separately

● We get cross-construct 
correlations at the latent 
level like the multivariate 
LCM
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Multivariate Dual-Change Model y1 y2 y3 y4

z1 z2 z3 z4

1

𝛈y int

𝛈y slp

𝛈z int

𝛈z slp

𝛈y Δ21 𝛈y Δ32 𝛈y Δ43

𝛈z Δ21 𝛈z Δ32 𝛈z Δ43

𝛈y4𝛈y3𝛈y2𝛈y1

𝛈z4𝛈z3𝛈z2𝛈z1

● But can use 
cross-construct regressions 
to look at proportional 
linkage across variables

● Incredibly flexible and 
powerful model

○ What theory does this model 
describe/test?
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Latent Change Score Model: Readings
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Where do we go from here?


