Theory in Practice: Modeling
In Neuroimaging

How to model “big” MRI datasets



Outline of talk

* Theory recap: modelling approaches can be reduced to two types:
predictive and descriptive

* “Big data” complicates our ability to apply both approaches
* Marginal Modelling is a good approach good for descriptive modelling

* Functional Random Forests is a good approach for predictive
modelling

* Other approaches can also handle big data, but are beyond the scope
of this workshop



Before even considering models, we need to
know what question to ask

* How and where may cortical thickness be associated with working
memory performance?



Before even considering models, we need to
know what question to ask

* How and where may cortical thickness be associated with working
memory performance?

e Can measures of functional brain organization predict an individual’s
working memory ability?



Each question requires a different modelling
approach

* How and where may cortical thickness be associated with working
memory performance? Descriptive modelling

e Can measures of functional brain organization predict an individual’s
working memory ability? Predictive modelling



Descriptive models measure what one has
collected predictive models measure what one will
collect

1#. Describes

https://www.educba.com/predictive-analytics-vs-descriptive-analytics/
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#2. Process Involved

https://www.educba.com/predictive-analytics-vs-descriptive-analytics/



Descriptive models provide insight, predictive

https://www.educba.com/predictive-analytics-vs-descriptive-analytics/



Descriptive models are limited to in-sample data,
oredictive models require out-of-sample data

41, Data Volume

https://www.educba.com/predictive-analytics-vs-descriptive-analytics/



Jescriptive modadels are assessed via tnheory anc
mference pred|ct|ve models are assessed by

5 #. Accuracy

https://www.educba.com/predictive-analytics-vs-descriptive-analytics/



Outline of talk

* Theory recap: modelling approaches can be reduced to two types:
predictive and descriptive

* “Big data” complicates our ability to apply both approaches
* Marginal Modelling is a good approach for descriptive modelling

* Functional Random Forests is a good approach for predictive
modelling

* Other approaches can also handle big data, but are beyond the scope
of this workshop



First, all health-focused imaging studies
should probably be big data

Sample size needed for 80% power
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Our ABCD pipeline generates anywhere from
10 to 90 thousand tests

Sample size needed for 80% power
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Our ABCD pipeline generates anywhere from 10 to

90 thousand tests (some special cases are in
hundreds)

Sample size needed for 80% power
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We’ve collected about 10,000 cases

Sample size needed for 80% power
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ABCD needed a lot of coordination and data
aggregation to collect over 10,000 participants
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Descriptive models must take into account
this nested structure

* Complex models may be slow to calculate when analyzing ~4500
participants
* Permutation tests may take days or even weeks

* Permutation tests lack exchangeability for complex questions



Permutation testing can reveal whether
differences in community structure are
significantly different
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Hirschhorn,2005, https://doi.org/10.1038/nrg1521



Permute group assignment and calculate
statistic

Actual data set

depression no depression
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Hirschhorn,2005, https://doi.org/10.1038/nrg1521



Do so for multiple permutations and construct a
distribution of the statistic for permuted groups
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P value is determined by the proportional rank
of the observed statistic compared to the
permuted distribution

Poyalue
Sampling
distribution
when Hj is true

Observed statistic

Frequency




Cluster failure: Why fMRI inferences for spatial extent
have inflated false-positive rates

Anders Eklund®®<', Thomas E. Nichols®¢, and Hans Knutsson®<
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Cluster failure: Why fMRI inferences for spatial extent

have inflated false-positive rates

Anders Eklund®P<", Thomas E. Nichols®¢, and Hans Knutsson®*

At a Z=3.1, false
positive rates are
generally better and
in-line with the true
FP rate
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This all works because each individual is
independently acquired from one another —the
data are exchangeable



Independence gets more complicated when you
have more complicated designs — but even here
we can exchange every individual

a) One-way model

Drug use

Cannabis Alcohol Nicotine Stimulant

Anderson and Braak, 2003, JSCS; 10.1080=0094965021000015558



However, if a second factor is nested, our
nermutations are limited to the nested pairs,
restricting our permutations

b) Two-way nested model

Drug use

Cannabis Alcohol Nicotine Stimulant
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Family nested by drug use

Anderson and Braak, 2003, JSCS; 10.1080=0094965021000015558



More complex designs have even more
restrictions, relative to the total number of
nermutations

¢) Two-way crossed, mixed model

Drug use
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n turn, restricted permutations have reduced
nower when controlling for the false positive rate

a) Crossed, mixed, test of A, £ ~ N(0,1} b) Crossed, mixed, test of A, & ~N(0,1)
no interaction interaction present

Power

0.8 0 2 4 6 8

[0 =Y (permutation of raw data),

A =R (permutation of residuals),

O = Y(B) (permutation of raw data restricted within levels of B),
® — Rab (permutation of residuals as ab units),

Anderson and Braak, 2003’ JSCS, 10.1080=009496502 1000015558 Lo =Y (B)ab (permutation of raw data as ab units, restricted within levels of B),

+ = normal-theory F-test.



Predictive models must also take into account
nested structure

Cuneus Left Putamen Left

value:
02 03 0
P
vah)
03 04 0
e — J

~N
o
5 3
o = J
(=] o
nm &
& &F & G
Cuneus Left Putamen Left
(.‘: - ~
81 ' 8
= ‘ o
i o |
; g 1
(=]

MO values
D006 0.0008 0.0010
L 1 1 1 1
%, ..ﬂ“..s.-
| |
/,(";' ! .
D vk
000
-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736019/



Scanner effects can be common, independent
of site

Scanner Effects

raw: Ih Thickness
raw: rh Thickness

ge siemens ge siemens
scanner

Gareth Harman, 4/11/19 — combat Cortical Thickness



ComBat has also been used to correct for
ABCD data, which can be predicted by site

Uncorrected ComBat

Sex, Hand Bal.

5ex, Hand Bal.

Age HEgFEEEEd
Sex, Hand, Age Bal,

10 20 30 10 20
Site cIassnflcatlon
accuracy

Nielson, 2018, biorxiv; http://dx.doi.org/10.1101/309260



Cross-validation strategies can mitigate
known but not unknown effects

* Stratified validation is possible via independent stratified groups
* Leave-one-site-out validation can help catch site effects

* But what about effects of scanner upgrades, software maintenance,
or even changes in personnel?



Outline of talk

* Theory recap: modelling approaches can be reduced to two types:
predictive and descriptive

* “Big data” complicates our ability to apply both approaches
 Marginal Modelling is a good approach for descriptive modelling

* Functional Random Forests is a good approach for predictive
modelling

* Other approaches can also handle big data, but are beyond the scope
of this workshop



The marginal model may be a more feasible
solution for modeling ABCD populations

* Strengths:

* Marginal model makes few assumptions with respect to the data
* Nested-designs can be modeled or unmodeled, and left to the error term (hopefully)
* Individual cases can be incomplete or missing for a marginal model
* Longitudinal designs are feasible within the marginal model framework
* Marginal model has a closed-form solution to the equation via a Sandwich
Estimator (SWE)
 It’s fast, and can be feasibly run with limited resources on lots of data

* Use of a wild bootstrap (WB) provides an NHST framework for complex
guestions



Critical limitations

* The marginal model cannot be used to draw inferences about
individuals within a population

* It is an exploratory approach, which can be verified using subsequent
confirmatory approaches

 DEAP can help conform such analyses to best standards and practices through
pre-registered reports, reproducibility, and independent validation



Bryan Gillaume’s and Tom Nichols implemented an
approach that uses a sandwich estimator to solve
a marginal model

Estimate FE subject Perform
covariance /groups small Perform
8 ) P . Wald Test

(SWE) covariance sample adj

1 residuals
Compute /
model
Y/X = Beta Statistical T map
for inference
Design
matrix

Imaging
Volume(s)




Marginal models are effectively linear, so we first
estimate the parameters for our design matrix by
dividing the imaging measure (Y) by the design (X)

Compute
model
Y/X = Beta

Design
matrix

Imaging
Volume(s)




For our software, the design matrix is just
your non-imaging data

Compute
model
Y/X = Beta

" 0001 700
i 0002 400 1648 Mo Diagnosis
[ 0003 640 1292 Depression

" 0004 562 1743 Mo Diagnosis

Imaging
Volume(s)




So for example, with the ABCD data we can
input measures and test a model

Marginal model: y ~ RT

Compute
model
Y/X = Beta

" 0001 700
i 0002 400 1648 Mo Diagnosis
[ 0003 640 1292 Depression

" 0004 562 1743 Mo Diagnosis

Imaging
Volume(s)




A sandwich estimator is used to estimate
covariance and determine the fixed effects
parameters

Estimate FE
covariance
SwE)

1 vm m -1
Compute S = (E I:ﬁi;ﬂ) (Z X;W;Vfﬁﬂxi) (E I:ﬁ’:;ﬂ) :
model i=1 i=1 i=1
Y/X = Beta s ~ "~ v a ~ g
Bread Meat Bread
Design
matrix

Imaging
Volume(s)




To handle nested structure, group covariance can
be calculated separately (CRITICAL FOR ABCD)

subject

Estimate FE
covariance /groups
(SWE) covariance

Compute
model
Y/X = Beta

Design
matrix

Imaging
Volume(s)




For ABCD, it is good to control for site and
gender

Estimate FE site gender
Ccovaria nce
(SWE) 14 2

1
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Finally, a Wald test extracts a t-map for
statistical inference

Estimate FE subject Perform
covariance /groups small Perform
5 . P . Wald Test
(SWE) covariance sample adj.

1 resiguals
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The statistical map looks like this

Estimate FE subject Perform
covariance /groups small Perform
. . Wald Test
(SWE) covariance sample adj.

1

Compute
model

residauals

Design
matrix

Imaging
Volume(s)




Use of a wild bootstrap enables inference similar
to a permutation test — so we can control for the

FWER

Estimate FE subject Perform
covariance /groups small Perform
8 ) P . Wald Test
(SWE) covariance sample adj.

1 residuals

Compute
model

/

Statistical T map
for inference

Wild
bootstrap

Design
matrix

Imaging
Volume(s)

Cluster
detection/

WB maps

TFCE

Inference map




Such a test allows us to detect significant

clusters

Estimate FE subject Perform
covariance /groups small
(SWE) covariance sample adJ

Perform
Wald Test

1

Compute
model

Wild
bootstrap

Design
matrix

Imaging
Volume(s)

Marginal Model clutserivalues g




Wild bootstrap

 WB_value = fitted_value + residual_value*sample_value

e Sample with replacement can be from simple or complex
distributions:
 Radenbacher (-1, 1) would mean we either:

« WB_value = fitted_value — residual_value
 WB_value = fitted_value + residual_value

* However, LOTS of possible distributions, so choice of distribution is
Important.



We have begun to implement a standalone
MarginalModelCifti package in R

[ README.md

MarginalModelCifti

The goal of MarginalModelCifti is to perform marginal models on CIFTI processed datasets. The package contains a single main
function that runs multiple subfunctions. Advanced users can use the subfunctions to construct their own analytic pipeline. However,

this is not recommend for beginning users.

Alpha version will be released at -- http://github.com/dcan-labs/MarginalModelCifti



The main wrapper for MarginalModelCifti takes in
imaging volumes and prepares them for analysis

PrepCIFTI/Sur
f/Vol

A

Imaging
Volume(s)




ComputeMM is applied to the prepared data; user
specifies the model using Wilkinson notation and
wraps the SwE and Wald Test using Geepack

Y ~ group + treatment

repCIFTI/Sur Statistical T map
f/VoI ComputeMM for inference

Imaging
Volume(s)




ComputeMM _ WB generates the WB maps
used to draw inferences about the T map

ComputeMM Statls'tlcal T map
for inference
COmputeMM_WD— Null Distribution

PrepCIFTI/Sur
f/Vol

Imaging
Volume(s)




In turn a family of functions are used to
parallellize ComputeMM WB

PrepCIFTI/Sur
f/Vol

Statistical T map

ComputeMM ]
for inference

ComputeMM_WB 'I Null Distribution

ComputeFits GetSurfAreas

* *
"l |||||||||||||||||||||||| | Yq *
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t ComputeResiudals :*
Volume(s) X . GetVolAreas




Cluster detection is performed within the main
wrapper, using information from both processes

PrepCIFTI/Sur
f/Vol

ComputeMM Statls'tlcal T map
for inference
Cluster
ComputeMM_WB Null Distribution detection/
TFCE

Inference map

Imaging
Volume(s)




[2] ApplyWB_to_data.R
[3) ComputeFits.R
[3] ComputeMM.R

[£] ComputeMM_WB.R

[2) ComputeResiduals.R Th e
[2] ComputeZscores.R CO m

MarginalMoc

orises multip

elCi

ti package

e fu

nctions that can

[3) GetSurfAreas.R be accessed by anyone

[3) GetVolAreas.R
[3] PrepCIFTILR

[2] PrepSurf.R

[2) PrepSurfMetric.R

[3] PrepVolMetric.R



Functions are documented in accordance
with CRAN guidelines

Files Plots Packages Help Viewer

& o n

R: ComputeMM - compute the marginal model at a single... ~

ComputeMM {MarginalModelCifti} R Documentation
1:1 (Top Level) = R Script *

Console  Terminal ComputeMM — compute the marginal model at a

. - single vertex/voxel
Type 'q()' to quit R.
Description
[Workspace loaded from ~/.RData]

This function will compute the marginal model on a single vertex or voxel. The function can be

> library("MarginalModelCifti/™) called in parallel to operate on a map. Such usage can be found in the main function
Error in library("MarginalModelCifti/") :
there is no package called ‘MarginalModelCifti/’ Usage
> library("MarginalModelCifti")
> open ComputeFits.R ComputeMM(cifti_meas, external_df, notation, family dist)

Error: unexpected symbol in "open ComputeFits.R"
> ComputeMM Arguments



Here are all the parameters for ConstructMarginalModel()

1
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external_df="/mnt/rose/shared/projects/ABCD/avg_pconn_maker/cordova_analysis_margmod pcs/gpl_18min_pconn.csv
CUHEFILE".Fﬂt,'DEHIS““FEdFD ojects/ABCDfavg _pconn_maker/cordova_analysis_margmod pcs/groupl_18min.conc”
structtype="pconn"

structfile=

matlab_path="/mnt/max/shared/code/externalfutilities/Matlab2816bRuntime/va1"”
surf_command="/mnt/max/shared/projects/FAIR users/Feczko/code in_dev/SurfConnectivity/"

wave = "/mnt/rose/shared/projects/ABCDfavg_pconn_maker/cordova_analysis _margmod pcsfapl _marg_nested.csv”
notation = formulaly~pc?_new)

corstr="independence

family dist="gaussian'

dist_type=' radenha her'

Z_thresh =

nboot=4

p_thresh=8.65

sigtype="enrichment

id _subjects="subjectkey’
output_directory="/mnt/rose/shared/projects/ABCD/avg_pconn_maker /cordova_analysis_margmod pcs/pc2_gpl _test
fastSwE=

adjustment=

ncores=4

norm_external_data=

norm_internal_data=

marginal_outputs =

marginal_matrix =

enrichment_path = "/mnt/max/shared/projects/FAIR users/Feczko/code in_dev/CommunityChisgquaredAnalysis/"
modules = "an max/shared/projects/FAIR_users/Feczko/code in_dev/CommunityChisquaredAnalysis/gordon_modules.cs
wb_command = "fusr/local/bin/wb _command'




To make things easier — we've made a jupyter
notebook that can be used as a reference

Jupyter MarginalModelCifti_LH_analysis Last Checkpoint: 02/01/2019 (autosaved) R  Logout | Control Panel

File Edit View Insert Cell Kernel Help Trusted |R O
+ = @B B A ¥ MHEuin B C W Markdown ~

2} make a directory for the MarginalModelCifti package mkdir MarginalModelcCifti

3} enter the directory od MarginalModelcifti

4) clone the MarginalModelCifti repository git clone https://gitlab.com/Fair lab/marginalmodelcifti.git ./
5) return to your initial home directory cd ..

5) Type R

B) After a prompt appears, make sure devtools is installed by typind install.packages ("devtools")

7} Load devtools library(devtools)

8} install the MarginalModelCifti package install ("MarginalModelcifti/")

NOTE: You may also want to clone the SurfConnectivity package, in case you do not have access to it

a) open a new terminal on exacloud

b} make a directory for SurfConnectivity mkdir SurfConnectivity

¢) go into SurfConnectivity folder cd SurfConnectivity

d) clone the SurfConnectivity repository here git clone https://gitlab.com/Fair lab/surfconnectivity.git ./

Call the MarginalModelCifti library — if this errors you will need to install it using devtools
In [1]: |library(MarginalModelCifti)
Set your projects folder, which is where you plan to run the analysis, then go to the folder

In [2]: |projectsfolder="/home/exacloud/lustrel/fnl lab/projects/marginalmodelciftitest”



Outline of talk

* Theory recap: modelling approaches can be reduced to two types:
predictive and descriptive

* “Big data” complicates our ability to apply both approaches
* Marginal Modelling is a good approach for descriptive modelling

* Functional Random Forests is a good approach for predictive
modelling

* Other approaches can also handle big data, but are beyond the scope
of this workshop



Nested structures -- people belong to
multiple subtypes

Dialect preferences: soda, coke or pop?

-

Feczko, Miranda-Dominguez, Marr, Graham, Nigg, Fair, TICS, 2019, DOI: https://doi.org/10.1016/j.tics.2019.03.009



Nested structures -- people belong to
multiple subtypes

Dialect preferences: soda, coke or pop? U.S. 2016 presidential election voting preferences

Feczko, Miranda-Dominguez, Marr, Graham, Nigg, Fair, TICS, 2019, DOI: https://doi.org/10.1016/j.tics.2019.03.009



Nested structures -- people belong to
multiple subtypes

Dialect preferences: soda, coke or pop?

by

0
Feczko, Miranda-Dominguez, Marr, Graham, Nigg, Fair, TICS, 2019, DOI: https://doi.org/10.1016/].tics.2019.03.009



But what about effects of scanner upgrades,
software maintenance, or even changes in
personnel?



If we want to control for unknown structure, we
need to identify subtypes tied to an outcome

approaches can confirm known subtypes but not discover
unknown subtypes tied to an outcome



If we want to control for unknown structure, we
need to identify subtypes tied to an outcome

e Supervised approaches can confirm known subtypes but not discover
unknown subtypes tied to an outcome

* Unsupervised approaches can discover unknown subtypes, but not
tied to any outcome



How does the Functional Random Forest
work?

Supervised component




Ask a question: can we predict depression

diagnosis?

Supervised component

Unsupervised component



We start with an input dataset

Input dataset
subj 5 lui Outco
76 pression

Supervised component

Unsupervised component



We start with an input dataset

Input dataset

subject RT (ms) AMY volume  Outcome
1476 Depression
1648 Mo Diagnosis
1292 Depression
1743 No Diagnosis

Supervised component 400
640

Unsupervised component



This dataset can be a functional connectivity
matrix

Input datase

Supervised component
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Unsupervised component



This dataset can be a functional connectivity
matrix — which gets reduced to either graph

metrics or principal components

Input dataset
|;5Int of graph metrics by community -- 10

Supervised component

metric value
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Input data are modeled via a random forest

via validation/testing

Supervised component

Random Forest
Creates decision trees
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Model is supervised because it attempts to

predict the outcome of interest

Supervised component

Random Forest
Creates decision trees
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It the random forest performs well on
independent test data, a similarity matrix is

produced from the RFs

Supervised component

Random Forest
Creates decision trees
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KAKR KAKA

Unsupervised component




Subgroups are identified from this matrix via
Infomap

Input dataset

subject RT (ms) AMY wolume  Qutcome
0001 700 1476 Depression
0002 400 1648 Mo Diagnosis
0003 B40 1292 Depression
0004 562 1743 Mo Diagnosis

Supervised component

Random Forest
Creates decision trees
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Unsupervised component

Infomap
Identifies communities



Subtypes arise from the model that are tied
to the outcome

Input dataset
subj 5 lui Outco
1 7 1476 pression

Supervised component

Random Forest

Creates decision trees
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The FRF can be used to identify trajectories in
longitudinal data

Longitudinal dataset
Subject | Age | Symptom Severity
0001 4 80
0001 | 11 120
0002 4 140
0002 | 11 110
v

Functional Data Analysis
b =_| Generates individual
trajectories

\ 4

f(t) = algl(t) + .... + akaek(t)
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Combining the set of functions estimates a
smooth trajectory for an individual’s symptoms

Longitudinal dataset
Subject | Age | Symptom Severity

0001 4 80

0001 | 11 120

0002 | 11 110

v

Functional Data Analysis
b =_| Generates individual
trajectories

\ 4

f(t) = algl(t) + .... + akaek(t)
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Combining the set of functions estimates a
smooth trajectory for an individual’s symptoms

RMS residual = 0.99661

15 *  data

trajectory| |
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symptom measure
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age (yrs)



We can use an unsupervised approach to
identify trajectories

H Longitudinal dataset
U n S u p e rv I S e d Subject | Age | Symptom Severity
0001 4 80
Correlation Matrix 0001 | 11 120
Compares trajectories 0002 | 4 140
- 0.63 0.49 0.54 0002 1 110
saslaz] - fot v
054 | 0.6 0.74 -

Functional Data Analysis
b =_| Generates individual

trajectories
A 4
Infomap X
Identifies f(t) = algl(t) + .... + akek(t)

~communities 5
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function measure

A 8 9 10 1 12 13 14
) age (yrs)
Correlation-based
subpopulations
RMS residual = 0.99661
15 ‘ [ daln —veloary

symptom measure
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Or use a “hybrid” approach that identifies
trajectory subtypes tied to an outcome of interest

; Longitudinal dataset i
U n S u pe rVI sed Subject | Age | Symptom Severity Hyb rI d
0001 4 80
Correlation Matrix o001 | 11 120 Parameters |
Compares trajectories 0002 | 4 140
oo Toms om w00z | 11 110 Random Forest
o3| - |073 0s0 v Creates decision trees
0.49 | 0.73 - 0.74
e Functional Data Analysis P .
b Generates individual ‘ }ﬂx\ "
trajectories deendn AL
A 4
Infomap Y v
|dentifies f(t) = alol(t) + .... + akak(t) Similarity matrix
7:70‘Unltles 15|t 0 10 — 10 0 1) subject | 0001 | 0002 | 0003 [ 0004

0001 | 1000 | 291 | 756 | 151
0002 | 291 | 1000 133 | 628

X\ 0003 | 756 | 133 | 1000 | 172
&(\ 0004 | 151 | 628 | 172 | 1000

9 10 " 12 13 14
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function measure

o

>
o
@

age (yrs)

Correlation-based Infomgp
subpopulations Identifies

communities

RMS residual = 0.99661
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A manual for using the FRF exists online
(https://dcan-labs.github.io/functional-random-

forest/)

View on GitHub @

functional-random-forest

Functional Analysis with Random Forests

Functional Random Forest (FRF) Manual

The Functional Random Forest presented in Subtyping cognitive profiles in Autism Spectrum

Disorder using a random forest algorithm, E. Feczko Ph.D. et al.

This manual documents how to use the RFAnalysis package written by Eric Feczko. The manual is
split into two main sections. The first section covers how to analyze cross-sectional data with the
Random forest subgroup detection (RFSD) tool. The second covers how to analyze longitudinal

trajectories with the Function Random Forest (FRF) tool. A brief introduction will walk the user

through installing the software.


https://dcan-labs.github.io/functional-random-forest/

A new release is available at:

View on GitHub @

functional-random-forest

Functional Analysis with Random Forests

Functional Random Forest (FRF) Manual

The Functional Random Forest presented in Subtyping cognitive profiles in Autism Spectrum

Disorder using a random forest algorithm, E. Feczko Ph.D. et al.

This manual documents how to use the RFAnalysis package written by Eric Feczko. The manual is
split into two main sections. The first section covers how to analyze cross-sectional data with the
Random forest subgroup detection (RFSD) tool. The second covers how to analyze longitudinal
trajectories with the Function Random Forest (FRF) tool. A brief introduction will walk the user

through installing the software.



A manual for using the FRF exists online
(https://dcan-labs.github.io/functional-random-

forest/)

View on GitHub @

functional-random-forest

Functional Analysis with Random Forests

Functional Random Forest (FRF) Manual

The Functional Random Forest presented in Subtyping cognitive profiles in Autism Spectrum

Disorder using a random forest algorithm, E. Feczko Ph.D. et al.

This manual documents how to use the RFAnalysis package written by Eric Feczko. The manual is
split into two main sections. The first section covers how to analyze cross-sectional data with the
Random forest subgroup detection (RFSD) tool. The second covers how to analyze longitudinal

trajectories with the Function Random Forest (FRF) tool. A brief introduction will walk the user

through installing the software.


https://dcan-labs.github.io/functional-random-forest/

Outline of talk

* Theory recap: modelling approaches can be reduced to two types:
predictive and descriptive

* “Big data” complicates our ability to apply both approaches
* Marginal Modelling is a good approach for descriptive modelling

* Functional Random Forests is a good approach for predictive
modelling

e Other approaches can also handle big data, but are beyond the
scope of this workshop



New approaches within statistics and machine
learning can also accommodate problems with big

data
* Many of these approaches have been developed in genomics
 comBat is a Bayesian approach to handle known site effects in data

e Surrogate Variable Analaysis

* Such approaches need to be examined in the context of neuroimaging
data to evaluate where each is most useful

* Knowing how to use these tools requires considerable skill in data
science, which has been relatively untaught in mental health fields

* Hopefully, the workshop tomorrow should get you excited about
applying these new tools and on your path towards doing “big data”

science right.
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Questions?



High dimensionality is bad for predictive
modelling

1 dimensions 2 dimensions 3 dimensions

—t
o

out of sample acc.
o
&)

o
o

0 500 1000 0 500 1000 0 500 1000
Sample size

Feczko, Miranda-Dominguez, Marr, Graham, Nigg, Fair, TICS, 2019, DOI: https://doi.org/10.1016/j.tics.2019.03.009



Predictive models must also take into account
nested structure
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