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Models try to identify associations between variables:

𝑋, predictor variables 
𝑦, outcome variables
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Models in clinical research have specific problems:

Models in clinical research 
have specific problems:

- Limited samples
- Multiple variables

- Thousands!
- Unknown model structure

Entire population
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While it is easy to obtain models that can describe 
within-sample data…
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it is hard to obtain models that can predict outcome in 
out-of-sample data

Models in clinical research 
have specific problems:

- Limited samples
- Multiple variables

- Thousands!
- Unknown model structure

Entire population

5



The question is why?

More importantly, what can be done to 
improve predictions across datasets?
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Topics 

• Partial-least squares Regression
• Feature Selection 

• Cross-Validation

• Null Distribution/Permutations

• An Example

• Regularization
• Truncated singular value decomposition

• Connectotyping: model based functional connectivity

• Example: models that generalize across datasets!
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Feature Selection
How relevant is the balance between the number of variables and observations?
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has a unique solution

𝐴 = 2
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The system

4 = 2𝐴

has a unique solution

𝐴 = 2

# Measurements > # Variables

What about repeated measurements (real 
data with noise)

4.0 = 2.0𝐴 → 𝐴 = 2.00
3.9 = 2.1𝐴 → 𝐴 ≈ 1.86
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Using linear algebra (𝒙 pseudo-inverse)

𝐴 = 𝑥′𝑥 −1𝑥′𝑦

𝐴 ≈ 1.9286

This 𝑨 minimizes σ𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥𝐬
𝟐

# Measurements < # Variables

What about (real) limited data:

8 = 4𝛼 + 𝛽

There are 2 variables (𝛼 and 𝛽) and 1 
measurements.

Solving the system:

8 − 4𝛼 = 𝛽

All the points on 𝛽 = 8 − 4𝛼 solve the
system. 

In other words, 
there is an infinite 
number of solutions!



For predictive models it’s important 
to limit the number of features 

relative to your sample size



• This ‘feature reduction’ can be done in a number of ways. 

• For partial least squares regression you reduce features based on how 
well models predict outcome.
• What do I mean by that? 
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Let’s revisit Principal Components Analysis
Let say you have a set of predictor
variables with some correlation
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If you define a new set of axis, you might have 
a better description of the system
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As most of the variance is observed across the 
black line, we can use it as a new base or axis
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You can add more axis to explain more variance
Additional axis are selected to be perpendicular to each other (orthogonal)
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While useful, PCA does not take into account 
the outcome variable
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In partial least squares regression (PLSR) you add an extra 
constrain selecting a rotation that maximizes outcome 
prediction
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You can reduce the number of features by 
selecting different number of components (axis) 
and make predictions with those components
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Example

Let’s suppose we like to predict an outcome 
given 401 variables and 60 observations
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Observations
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Predictions using only one component
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Two components
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More components:
- Low error
- > likelihood of overfitting
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For partial least squares 
regression, within sample tests 

can lead to over fitting



The question is, 
how many components 
do we need for a 
generalizable model?
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How do we avoid over fitting with 
cross validation?
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Cross-Validation

Definition: Using different samples to model and predict

- hold-out: you use the unique dataset you have to make random 
partitions, one to model and the other to predict

Other forms of out of sample sampling

- Bootstrapping : random sampling with replacement
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Let’s use an example to illustrate the problem of 
overfitting and how hold-out cross validation can 

minimize it
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Imagine an “executive functioning” score is 
related to mean functional connectivity

The modeler does not know 
the model structure but it is 
given by a third order 
polynomial:

𝑥 = mean fconn between the Fronto-parietal and default networks
score= 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥

2 + 𝑝3𝑥
3
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Data was measured on multiple participants

· Unique

participant

Noiseless data
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However, data was collected on two sites

Noiseless data
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and each site has a different scanner’s noise 
profile,

Noiseless data

fconn’s noise
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which leads to significant batch effects.

fconn’s noise

=+

Measured dataNoiseless data
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We, however, only have access to OHSU data.

Measured data
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Modeling approach

• Predict executive functioning score 
based on mean fconn using 
polynomials of different order
• Starting from simplest to more 

complex models

• Estimate “goodness of the fit” 
(mean square errors in predictions)

• Select the model with the “best fit” 
i.e., lowest error
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Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order

First order
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Second order

Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order
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Third order

Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order
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Fourth order

Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order

46



Fifth order

Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order
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Sixth order

Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order
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Fifth order seems to be the best fit

Mean Square Error

OHSU

1 22.35

2 21.22

3 16.21

4 15.61

5 14.14

6 14.13

Polynomial 

order
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Let’s use OHSU’s models on Minn’s data
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OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error

First order
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Second order

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error

52



Third order

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error
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Third order
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Fourth order

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error
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Fifth order

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error
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Sixth order

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error
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Take-home message

Testing performance on the same data used to obtain a model leads to 
overfitting. Do not do it. 
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How to know that the best model is a third 
order polynomial?

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error
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How to know that the best model is a third 
order polynomial?

Use hold-out cross-validation!

OHSU Minn

1 22.35 23.16

2 21.22 23.27

3 16.21 39.03

4 15.61 36.77

5 14.14 44.55

6 14.13 49.96

Polynomial 

order

Mean Square Error
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Let’s use hold-out cross-validation to fit the 
most generalizable model for this data set
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Make two partitions: Let’s use 90% of the sample 
for modeling and hold 10% out for testing
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Use the partition modeling to fit the simplest model. 
Then predict in-sample and out-sample data

A reasonable cost 
function is the mean 
of the sum of 
squares’s residuals 

63



Resample and repeat

Keep track of the 
errors.
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Repeat N times 
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Increase model complexity, 

Increase order 
complexity

Keep track of the 
errors.
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Third order
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Fourth order
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Visualize results

Pick the best 
(lowest out-of-
sample prediction)

Notice how the in-sample 
(modeling) error decreases as order 
increases: OVERFITTING
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Take-home message

Cross-validation is a useful tool towards predictive modeling. 

Partial-least squares regression requires cross-validation for predictive 
modeling to avoid overfitting
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Generating Null hypothesis data
Why is it important to generate a null distribution?
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How do you know that your model behaves 
better than chance?

• What is chance in the context of modeling 
and hold-out cross-validation?
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9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

Let’s suppose this is your data

Original data
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Make two random partitions: modeling and 
validation

Original data Modeling Validation

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62
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Randomize predictor and outcomes in the 
partition used for modeling

Original data Modeling Validation

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 77
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 20
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 21
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62
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Estimate out-of-sample performance:

Original data Modeling Validation

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 77
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 20
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 21
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

- Calculate the model in the 
partition “Modeling”

- Predict outcome on the 
partition “Validation”

- Estimate “goodness of the fit”: 
mean square error

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62
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Repeat and keep track of the errors

Original data Modeling Validation

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 62
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 19
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 20

9𝑥1 − 7𝑥2 +⋯− 4𝑥𝑛 = 21
−𝑥1 + 9𝑥2 +⋯+ 2𝑥𝑛 = 19
2𝑥1 + 7𝑥2 +⋯+ 2𝑥𝑛 = 77
1𝑥1 − 6𝑥2 +⋯+ 1𝑥𝑛 = 20
7𝑥1 − 2𝑥2 +⋯− 9𝑥𝑛 = 62

- Calculate the model in the 
partition “Modeling”

- Predict outcome on the 
partition “Validation”

- Estimate “goodness of the fit”: 
mean square error
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Compare performance (mean squares error in out-of-sample 
data) to determine if your model predicts better than chance!

Mean Square Errors

78



Example using Neuroimaging data
cross-validation, regularization and PLSR
fconn_regression tool
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I’ll use as a case the study of cueing in 
freezing of gait in Parkinson’s disease

http://parkinsonteam.blogspot.com/2011/10
/prevencion-de-caidas-en-personas-con.html

https://en.wikipedia.org/wiki/Parkinson's_disease

Freezing of gait, a pretty descriptive name,  is an 
additional symptom present on some patients

Freezing can lead to falls, which adds an extra 
burden in Parkinson’s disease

80

http://parkinsonteam.blogspot.com/2011/10/prevencion-de-caidas-en-personas-con.html
https://en.wikipedia.org/wiki/Parkinson's_disease


Auditory cues, like beats at a constant rate, are an effective 
intervention to reduce freezing episodes in some patients

Open loop

Ashoori A, Eagleman DM, Jankovic J. Effects of Auditory Rhythm and Music on Gait Disturbances in 
Parkinson’s Disease [Internet]. Front Neurol 2015; 
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The goal of the study is to determine whether 
improvement after cueing can be predicted by 
resting state functional connectivity

82



Available data

Resting state functional MRI
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Approach

1. Calculate rs-fconn
• Group data per functional network pairs: Default-Default, Default-Visual, …

2. Use PLSR and cross-validation to determine whether improvement 
can be predicted using connectivity from specific brain networks

3. Explore outputs

4. Report findings
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First step is to calculate resting state functional 
connectivity and group data per functional system pairs
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PLSR and cross-validation

Parameters

• Partition size
• Hold-one out
• Hold-three out

• How many components:
• 2, 3, 4,…

• Number of repetitions
• 100?, 500?,…

• Calculate null-hypothesis data 
• Number of repetitions: 10,000?

This can be done using the tool 
fconn_regression
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Comparing distribution of prediction errors for real 
versus null-hypotheses data
Sorted by Cohen effect size

Visual and subcortical

Effect size = 0.87

Auditory and default

Effect size = 0.81

Somatosensory lateral and 
Ventral attention

Effect size = 0.78

Visual Auditory

DefaultSubcortical

Ventral 
Attn

Somatosensory 
lateral 

Mean square error Mean square error Mean square error 87



We have a virtual machine and a 
working example 

Let us know if you are interested in a 
break-out session
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Topics 

• Partial-least squares Regression
• Feature Selection 

• Cross-Validation

• Null Distribution/Permutations

• An Example

• Regularization
• Truncated singular value decomposition

• Connectotyping: model based functional connectivity

• Example: models that generalize across datasets!
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Regularization
Truncated singular value decomposition

90



# Measurements = # Variables

The system

4 = 2𝐴

has a unique solution

𝐴 = 2

# Measurements > # Variables

What about repeated measurements (real 
data with noise)

4.0 = 2.0𝐴 → 𝐴 = 2.00
3.9 = 2.1𝐴 → 𝐴 ≈ 1.86

Select the solution with the lowest mean 
square error!

4.0
3.9

=
2.0
2.1

𝐴

𝑦 = 𝑥𝐴

Using linear algebra (𝒙 pseudo-inverse)

𝐴 = 𝑥′𝑥 −1𝑥′𝑦

𝐴 ≈ 1.9286

This 𝑨 minimizes σ𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥𝐬
𝟐

# Measurements < # Variables

What about (real) limited data:

8 = 4𝛼 + 𝛽

There are 2 variables (𝛼 and 𝛽) and 1 
measurements.

Solving the system:

8 − 4𝛼 = 𝛽

All the points on 𝛽 = 8 − 4𝛼 solve the
system. 

In other words, 
there is an infinite 
number of solutions!



What if you can’t reduce the number of 
features?

Regularization is a powerful approach to handle 
this kind of problems (ill-posed systems)
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We know that the pseudo-inverse offers the optimal solution (lowest 
least squares) for systems with more measurements than observations
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We can use the pseudo-inverse to calculate a solution in 
systems with more measurements than observations
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Example: Imagine a given outcome can be predicted by 379 
variables,…

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥3791)

95



And that you have 163 observations:

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

…
𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

1)

2)

3)

163)
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Using the pseudo-inverse you can obtain a 
solution with high predictability

97



Using the pseudo-inverse you can obtain a 
solution with high predictability

This solution, however, 
is problematic:

*unstable beta weights
*over fitting
*not applicable to 
outside 
dataset

98



What does “unstable beta weights” mean?

Let’s suppose age and weight are two variables used 
in your model

For one participant you used

• Age: 10.0 years

• Weight: 70 pounds

• Corresponding outcome: “score” of 3.7

There was, however, an error in data collection and 
the real values are:

• Age: 10.5 years

• Weight: 71 pounds
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Updating predictions in the same model

Let’s suppose age and weight are two variables used 
in your model

For one participant you used

• Age: 10.0 years

• Weight: 70 pounds

• Corresponding outcome: “score” of 3.7

There was, however, an error in data collection and 
the real values are:

• Age: 10.5 years

• Weight: 71 pounds

Stable beta-weights: 

score ~ 3.9

Unstable beta 
weights: 

score ~ -344,587.42

100



What is the best solutions for the system?

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

…
𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯𝛽379𝑥379

1)

2)

3)

163)

𝑦 = 𝑋𝛽
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Remember the PCA section?

We said that we can rotate X 
(the data) to find optimal 
projections

We can use different number of 
axis

Adding more axis leads to:
• More explained variance
• More over-fitting
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In truncated singular value decomposition, 
we follow a similar approach

• Decompose X in such a way that we 
can explore effect of 
inclusion/exclusion of components 
(singular value decomposition)

• Make a new X truncating some 
components

• Solve the system plugging 𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
into the pseudo-inverse

• Select the optimal number of 
components

𝑋 = 𝑈Σ𝑉𝑇

𝛴 =
𝜎1 ⋯ 0
⋮ ⋱ 0
0 ⋯ 𝜎𝑀

,

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑀 ≥ 0.

The smaller singular values of 𝑋 are 
more unstable (susceptible to 

noise)
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In truncated singular value decomposition, 
we follow a similar approach

• Decompose X in such a way that we 
can explore effect of 
inclusion/exclusion of components 
(singular value decomposition)

• Make a new X truncating some 
components

• Solve the system plugging 𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
into the pseudo-inverse

• Select the optimal number of 
components

𝑋 = 𝑈Σ𝑉𝑇

𝛴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =
𝜎1 ⋯ 0
⋮ ⋱ 0
0 ⋯ 0

,

𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 𝑈Σ𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑉
𝑇
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In truncated singular value decomposition, 
we follow a similar approach

• Decompose X in such a way that we 
can explore effect of 
inclusion/exclusion of components 
(singular value decomposition)

• Make a new X truncating some 
components

• Solve the system plugging 𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
into the pseudo-inverse

• Select the optimal number of 
components

𝛽 = 𝑋′𝑋 −1𝑋′𝑦

Pseudo-
inverse

𝛽𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
′𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

−1𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
′𝑦
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In truncated singular value decomposition, 
we follow a similar approach

• Decompose X in such a way that we 
can explore effect of 
inclusion/exclusion of components 
(singular value decomposition)

• Make a new X truncating some 
components

• Solve the system plugging 𝑋𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
into the pseudo-inverse

• Select the optimal number of 
components

Accuracy
Norm of the residuals

?
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Unstable 
Pseudo-inverse 
solution

Let’s get back to our example:
379 variables and 163 observations
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Solving the system preserving only the largest 
singular value

Accuracy
Norm of the residuals
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Preserving two singular values

Accuracy
Norm of the residuals
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Keeping 3

Accuracy
Norm of the residuals
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All minus one

Accuracy
Norm of the residuals

111



Keeping all

Accuracy
Norm of the residuals
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You can select the “optimal” number of components 
using cross-validation and maximizing predictions of 
out-of-sample data 

Accuracy
Norm of the residuals

Use tsvd and cross-validation

*more stable beta weights
*less over fitting
*applicable to outside 
dataset

?
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Section’s summary

• Testing performance on the same data used to obtain a model leads 
to overfitting. Do not do it. Use cross-validation instead.

• Modeling is hard, especially when the number of “unknowns” 
exceeds the number of measurements: “ill-posed” systems

• These types of problems are common on neuroimaging projects

• Regularization and cross-validation can minimize the risk of overfitting 
and lead to better out-of-sample performance
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Towards estimates of functional 
connectivity that generalize 
across datasets
Correlations might not be enough with limited data (~5 mins)
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Connectotyping

The activity of each brain region can be 
predicted by the weighted contribution 
of all the other brain regions

Ƹ𝑟1

Ƹ𝑟2
Ƹ𝑟3
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How can we make an educated guess of 
“blue” given “red” and “green”

Ƹ𝑟1

Ƹ𝑟2
Ƹ𝑟3
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We can combine them linearly and estimate 
the beta weights

β1,2

β1,3

Ƹ𝑟1

Ƹ𝑟2
Ƹ𝑟3
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And formulate this mathematically

β1,2

β1,3

Ƹ𝑟1 = 𝟎 𝑟1 + β1,2 𝑟2 + β1,3 𝑟3
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Notice that blue does not depend on blue

β1,2

β1,3

Ƹ𝑟1 = 𝟎 𝑟1 + β1,2 𝑟2 + β1,3 𝑟3
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Repeat approach for red

β2,1

β2,3

Ƹ𝑟2 = β2,1 𝑟1 + 0 𝑟2+ β2,3 𝑟3

Red does not 
depend on red
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And green

β3,1

β3,2

Ƹ𝑟3 = β3,1 𝑟1 + β3,2 𝑟2+ 𝟎 𝑟3

Green does not 
depend on green
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Which can be represented as a 3x3 matrix

Ƹ𝑟1
Ƹ𝑟2
Ƹ𝑟3

=

𝟎 β1,2 β1,3
β2,1 𝟎 β2,3
β3,1 β3,2 𝟎

𝑟1
𝑟2
𝑟3

Matricial form

Ƹ𝑟1 = 0 𝑟1 + β1,2 𝑟2 + β1,3 𝑟3

Ƹ𝑟2 = β2,1 𝑟1 +      0 𝑟2+ β2,3 𝑟3

Ƹ𝑟3 = β3,1 𝑟1 + β3,2 𝑟2+     0 𝑟3
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General case (“M” instead of 3 ROIs):
A bigger matrix

General case

Ƹ𝑟1
Ƹ𝑟2
⋮
Ƹ𝑟𝑀

=

0 β1,2
β2,1 0

… β1,𝑀
… β2,𝑀

⋮ ⋮
β𝑀,1 β𝑀,2

⋱ ⋮
… 0

𝑟1
𝑟2
⋮
𝑟𝑀

Ill-posed system (more unknowns that data)

Solved by regularization and cross validation
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And the solution is an individualized
connectivity matrix

Solution!

General case

Ƹ𝑟1
Ƹ𝑟2
⋮
Ƹ𝑟𝑀

=

0 β1,2
β2,1 0

… β1,𝑀
… β2,𝑀

⋮ ⋮
β𝑀,1 β𝑀,2

⋱ ⋮
… 0

𝑟1
𝑟2
⋮
𝑟𝑀
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Connectivity matrices (models)
can be compared

Ƹ𝑟1
Ƹ𝑟2
⋮
Ƹ𝑟𝑀

=

0 β1,2
β2,1 0

… β1,𝑀
… β2,𝑀

⋮ ⋮
β𝑀,1 β𝑀,2

⋱ ⋮
… 0

𝑟1
𝑟2
⋮
𝑟𝑀

Ƹ𝑟1
Ƹ𝑟2
⋮
Ƹ𝑟𝑀

=

0 β1,2
β2,1 0

… β1,𝑀
… β2,𝑀

⋮ ⋮
β𝑀,1 β𝑀,2

⋱ ⋮
… 0

𝑟1
𝑟2
⋮
𝑟𝑀

Ƹ𝑟1
Ƹ𝑟2
⋮
Ƹ𝑟𝑀

=

0 β1,2
β2,1 0

… β1,𝑀
… β2,𝑀

⋮ ⋮
β𝑀,1 β𝑀,2

⋱ ⋮
… 0

𝑟1
𝑟2
⋮
𝑟𝑀

Subject 1

Subject 2

Subject 3
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- models can also predict brain activity
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To predict brain activity
- Start with the original fMRI data (after cleaning)
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Fresh data

Modeling

Modeling

Fresh data

Next, split the data randomly in 2 sections:
One for modeling, the other for prediction

129



Use the section modeling for connectotyping
Calculate the beta weights (connectivity matrix)!

Fresh data

Modeling

Connectotype
Ƹ𝑟1
Ƹ𝑟2
Ƹ𝑟3

=

𝟎 β1,2 β1,3
β2,1 𝟎 β2,3
β3,1 β3,2 𝟎

𝑟1
𝑟2
𝑟3
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Use the matrix to predict
brain activity in fresh data

Modeling

Connectotype

Predicted dataFresh data
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Compare fresh data with predicted data
You may use correlation coefficients!

Modeling

Connectotype

Predicted dataFresh data

R1

R2

R3

ഥ𝑹

Compare fresh 
vs predicted data
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Validation
Data sets

HUMANS:

• 27 healthy adult humans (16 females) 
age 19 to 35 years

• Subset scanned a second time
two weeks later

(Validated in data from 11 macaques too)
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Validation
Step 1

Approach:

1. A model was calculated for each 
participant using partial data

2. Each model was used to predict fresh 
data for each scan

3. Correlation between predicted and 
observed timecourses were calculated
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Validation
Step 2

Approach:

1. A model was calculated for each 
participant using partial data

2. Each model was used to predict fresh 
data for each scan

3. Correlation between predicted and 
observed timecourses were calculated
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Validation
Step 3

Approach:

1. A model was calculated for each 
participant using partial data

2. Each model was used to predict fresh 
data for each scan

3. Average correlation between predicted 
and observed timecourses was 
calculated
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When the model and fresh data came from 
the same participants, ഥ𝑹 ≈ 𝟎. 𝟖𝟕

Fresh dataBaseline

Su
b

je
ct

137
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When the model and fresh data came from 
different participants, ഥ𝑹 ≈ 𝟎. 𝟔𝟒

Fresh dataBaseline

Su
b

je
ct

138
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Notice that by looking at a single number (ഥ𝑹)
we can characterize individuals, since there was 
no overlap in predicting self versus others

Fresh dataBaseline

Su
b

je
ct

0.6 0.7 0.8 0.9
Correlations

139
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As further validation, we predicted fresh data 
acquired 2 weeks later, finding the same trend:

Fresh dataBaseline

Su
b

je
ct

0.6 0.7 0.8

Correlations

Accurate 
characterization 

of individuals

shared variance
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Same trend is also observed in macaques
ഥ𝑹 are reduced

Fresh dataBaseline

Su
b

je
ct

0.2 0.4 0.6
Correlations

Accurate 
characterization 

of individuals

shared variance

141
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These findings suggest that

We are all equipped with functional 
networks that process certain stimuli 
in the same way

… on top of this…

we all each have unique salient 
functional networks that make us 
unique

0.6 0.7 0.8 0.9
Correlations

shared variance
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These findings suggest that

We are all equipped with functional 
networks that process certain stimuli 
in the same way

… on top of this…

we all each have unique salient 
functional networks that make us 
unique

0.6 0.7 0.8 0.9
Correlations

Accurate 
characterization 

of individuals

143
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So, the next question is
“What brain systems make a connectome unique”
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To do this, we look at how similar or different 
the models were across participants

Variance Across Subjects

Subjects

145Miranda-Dominguez O, et al.. PLoS One. 2014



Fronto-parietal cortex
makes a connectome unique

More 
individual

More 
conserved

146
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In contrast, notice how similar 
motor systems are across individuals

More 
individual

More 
conserved

147
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How much data is needed to connectotype?
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2.5 minutes of data is enough to 
connectotype!

• Self vs others experiment was 
repeated using different 
amounts of data

• 2.5 minutes of data is enough to 
connectotype!

Time
2.5 minutes

149
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In summary, connectotyping

• Identifies connectivity patterns unique to individuals

• The connectotype is robust in adults and can be 
obtained with limited amounts of data 

• fronto-parietal systems are highly variable amongst 
individuals.
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Can we use connectotyping in youth?
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Participants

Controls passing QC:
• N=188 scans (159 subjects)

• 131 subjects with 1 scan
• 27 subjects with 2 scans
• 1 subjects with 3 scans

• Age: 7-15

• 60% males

• Siblings (16 pairs)
• 16 families with 2 siblings each

“Gordon” parcellation schema

152
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Connectotyping in youth 
Step 1

Approach:

1. A model was calculated for each scan 
(N=188)

2. Each model was used to predict fresh 
data for each scan (N=188)

3. Average correlation between predicted 
and observed timecourses were 
calculated (N = 188 x 188)

4. Average correlations were grouped based 
on the datasets used for modeling and 
prediction
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Connectotyping in youth
Step 2

Approach:

1. A model was calculated for each scan 
(N=188)

2. Each model was used to predict fresh 
data for each scan (N= 188 x 188 x ROIs)

3. Average correlation between predicted 
and observed timecourses were 
calculated (N = 188 x 188)

4. Average correlations were grouped based 
on the datasets used for modeling and 
prediction
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Connectotyping in youth
Step 3

Approach:

1. A model was calculated for each scan 
(N=188)

2. Each model was used to predict fresh 
data for each scan (N= 188 x 188 x ROIs)

3. Average correlation between predicted 
and observed timecourses were 
calculated (N = 188 x 188)

4. Average correlations are grouped based 
on the datasets used for modeling and 
prediction
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Connectotyping in youth
Step 4

Approach:

1. A model was calculated for each scan 
(N=188)

2. Each model was used to predict fresh 
data for each scan (N=188 x 188 x ROIs)

3. Average correlation between predicted 
and observed timecourses were 
calculated (N = 188 x 188)

4. Average correlations were grouped based 
on the datasets used for modeling and 
prediction

I. Same scan
II. Same participant
III. Sibling
IV. Unrelated
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Connectotyping in youth 
Predicting time courses

Same 
scan 
(N=188)
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Predicting fresh data from the same scan

Same 
scan 
(N=188)

Distributions of 
correlations (per group)

0.25 1.00

Average 
correlations

0.50 0.75

158
Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.



Predicting data from the same participant acquired 1 or 2 years 
later

1 or 2 years later

Same 
scan 
(N=188) Same 

participant
(N=60)

Difference in years when 
data was acquired

Distributions of 
correlations (per group)

0.25 1.00

Average 
correlations

0.50 0.75

159
Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.



Predicting timecourses amongst siblings

Same 
scan 
(N=188)

Siblings
(N=46)

Same 
participant
(N=60)

1 or 2 years later

Difference in years when 
data was acquired

Distributions of 
correlations (per group)

0.25 1.00

Average 
correlations

0.50 0.75

160
Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.



Predicting timecourses amongst unrelated

Same 
scan 
(N=188)

Siblings
(N=46)

Same 
participant
(N=60)

Unrelated
(N=35,050)

1 or 2 years later

Difference in years when 
data was acquired

Distributions of 
correlations (per group)

0.25 1.00

Average 
correlations

0.50 0.75

161Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.



Characterization of individuals are stable
(at least over a period of 2 years)

Same 
participant
(N=60)

Unrelated
(N=35,050)

1 or 2 years later

Difference in years when 
data was acquired

Distributions of 
correlations (per group)

0.25 1.00

Average 
correlations

0.50 0.75

Same 
scan 
(N=188)

162Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.



Siblings cluster together higher than 
unrelated

Siblings
(N=46)

Unrelated
(N=35,050)

Difference in years when 
data was acquired

Distributions of 
correlations (per group)

0.25 1.00

Average 
correlations

0.50 0.75

163Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.



These findings suggest that

The connectotype is similarly predictive in 
children as shown in adults, 
across a wider timespan, 
and some features appear to be familial
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What if we now use multivariate statistics (instead of using the 
average correlation) to compare connectomes?
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Can we identify heritable patterns of 
functional connectivity?

• Some mental disorders run strongly 
among families

• It might be useful to identify what is 
the “baseline” shared connectome 
across siblings?
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There is evidence of similar
thoughts among siblings

http://edition.cnn.com/2015/09/06/tennis/tennis-venus-serena-bouchard/
http://www.tampabay.com/news/politics/national/bush-dynasty-
continues-to-impact-republican-politics/1248057
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Datasets

OHSU Human Connectome Project

Data from 198 unique participants

1 hour of data each

22-36 yo, 45% males

79 pairs of siblings:

• 10 identical twins

• 11 non-identical twins

• 58 sibling non-twins

Data from 32 unique participants

5 mins of low-head movement of RS

7-15 yo, 60% males

Siblings (16 pairs)

16 families with 2 siblings each
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Approach

Within dataset
• Calculate functional connectivity 

• Connectotyping
• Correlations

• Compared each participant pair
• Connectotyping: predicting timecourses
• Correlations: spatial correlations

• Train classifiers (SVM) to identify each 
pair of participants as siblings or 
unrelated

Between datasets

• Test classifiers’ performance 
across datasets
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Within OHSU results
Out-of-sample performance

170
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Within HCP results
Out-of-sample performance

171
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Within HCP results
Out-of-sample performance

172

Miranda-Domínguez O, et al. Heritability of the human connectome: A 
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Predictions across datasets
Only connectotyping was able to predict kinship

173Miranda-Domínguez O, et al. Heritability of the human connectome: A 
connectotyping study. Netw Neurosci 2018.
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Rules of thumb

• In selecting predictor variables
• Make sure predictor variables are related to outcome

• Try to select variables with the lowest redundancy 

• It is better to have more observations than variables

• Regardless of modeling framework, you should use
• Cross-validation to have an estimate of out-of-sample performance

• Regularization to obtain more stable beta weights

• Test performance on null data, to determine whether your models predict 
better than chance
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