Important concepts and considerations in predictive modeling

Oscar Miranda-Domínguez, PhD, MSc.
Research Assistant Professor
Developmental Cognition and Neuroimaging Lab, OHSU

Models try to identify associations between variables:

X, predictor variables
y, outcome variables

Models in clinical research have specific problems:

- Limited samples
- Multiple variables
- Thousands!
- Unknown model structure

Entire population

While it is easy to obtain models that can describe

 within-sample data...- Limited samples
- Multiple variables
- Thousands!
- Unknown model structure

Entire population
it is hard to obtain models that can predict outcome in out-of-sample data

- Limited samples
- Multiple variables
- Thousands!
- Unknown model structure

Entire population

The question is why?

More importantly, what can be done to improve predictions across datasets?

Topics

- Partial-least squares Regression
- Feature Selection
- Cross-Validation
- Null Distribution/Permutations
- An Example
- Regularization
- Truncated singular value decomposition
- Connectotyping: model based functional connectivity
- Example: models that generalize across datasets!

Feature Selection

How relevant is the balance between the number of variables and observations?
\# Measurements = \# Variables
The system

$$
4=2 A
$$

has a unique solution

$$
A=2
$$

\# Measurements = \# Variables
\# Measurements > \# Variables

The system

$$
4=2 A
$$

has a unique solution

$$
A=2
$$

What about repeated measurements (real data with noise)
$4.0=2.0 \mathrm{~A}$
$3.9=2.1 A$
\# Measurements = \# Variables
\# Measurements > \# Variables

The system

$$
4=2 A
$$

has a unique solution

$$
A=2
$$

What about repeated measurements (real data with noise)
$4.0=2.0 A \rightarrow A=2.00$
$3.9=2.1 A \rightarrow A \approx 1.86$
\# Measurements = \# Variables
\# Measurements > \# Variables

The system

$$
4=2 A
$$

has a unique solution

$$
A=2
$$

What about repeated measurements (real data with noise)

$$
4.0=2.0 A \rightarrow A=2.00
$$

$$
3.9=2.1 A \rightarrow A \approx 1.86
$$

Select the solution with the lowest mean square error!
\# Measurements > \# Variables
What about repeated measurements (real data with noise)

$$
4.0=2.0 A \rightarrow A=2.00
$$

$$
3.9=2.1 A \rightarrow A \approx 1.86
$$

Select the solution with the lowest mean square error!

$$
\begin{aligned}
{\left[\begin{array}{l}
4.0 \\
3.9
\end{array}\right] } & =\left[\begin{array}{l}
2.0 \\
2.1
\end{array}\right] A \\
y & =x A
\end{aligned}
$$

\# Measurements > \# Variables
What about repeated measurements (real data with noise)

$$
4.0=2.0 A \rightarrow A=2.00
$$

$$
3.9=2.1 A \rightarrow A \approx 1.86
$$

Select the solution with the lowest mean square error!

$$
\begin{gathered}
\qquad\left[\begin{array}{c}
4.0 \\
3.9
\end{array}\right]=\left[\begin{array}{l}
2.0 \\
2.1
\end{array}\right] A \\
y=x A \\
\text { Using linear algebra (} \boldsymbol{x} \text { pseudo-inverse) } \\
A=\left(x^{\prime} x\right)^{-1} x^{\prime} y \\
A \approx 1.9286 \\
\text { This } \boldsymbol{A} \text { minimizes } \sum \text { residuals }^{2}
\end{gathered}
$$

\# Measurements < \# Variables

What about repeated measurements (real data with noise)

$$
4.0=2.0 A \rightarrow A=2.00
$$

$$
3.9=2.1 A \rightarrow A \approx 1.86
$$

Select the solution with the lowest mean square error!

$$
\begin{aligned}
{\left[\begin{array}{l}
4.0 \\
3.9
\end{array}\right] } & =\left[\begin{array}{l}
2.0 \\
2.1
\end{array}\right] A \\
y & =x A
\end{aligned}
$$

Using linear algebra (\boldsymbol{x} pseudo-inverse)

$$
\begin{gathered}
A=\left(x^{\prime} x\right)^{-1} x^{\prime} y \\
A \approx 1.9286
\end{gathered}
$$

This A minimizes \sum residuals ${ }^{2}$

What about (real) limited data:

$$
8=4 \alpha+\beta
$$

There are 2 variables (α and β) and 1 measurements.

What about repeated measurements (real data with noise)

$$
4.0=2.0 A \rightarrow A=2.00
$$

$$
3.9=2.1 A \rightarrow A \approx 1.86
$$

Select the solution with the lowest mean square error!

$$
\begin{aligned}
{\left[\begin{array}{l}
4.0 \\
3.9
\end{array}\right] } & =\left[\begin{array}{l}
2.0 \\
2.1
\end{array}\right] A \\
y & =x A
\end{aligned}
$$

Using linear algebra (\boldsymbol{x} pseudo-inverse)

$$
\begin{gathered}
A=\left(x^{\prime} x\right)^{-1} x^{\prime} y \\
A \approx 1.9286
\end{gathered}
$$

This A minimizes \sum residuals ${ }^{2}$
\# Measurements < \# Variables
What about (real) limited data:

$$
8=4 \alpha+\beta
$$

There are 2 variables (α and β) and 1 measurements.

Solving the system:

$$
8-4 \alpha=\beta
$$

All the points on $\beta=8-4 \alpha$ solve the system.

In other words, there is an infinite number of solutions!

For predictive models it's important to limit the number of features relative to your sample size

- This 'feature reduction' can be done in a number of ways.
- For partial least squares regression you reduce features based on how well models predict outcome.
- What do I mean by that?

Let's revisit Principal Components Analysis

Let say you have a set of predictor variables with some correlation

If you define a new set of axis, you might have a better description of the system

As most of the variance is observed across the black line, we can use it as a new base or axis

You can add more axis to explain more variance

 Additional axis are selected to be perpendicular to each other (orthogonal)

While useful, PCA does not take into account the outcome variable

In partial least squares regression (PLSR) you add an extra constrain selecting a rotation that maximizes outcome prediction

Outcome

You can reduce the number of features by selecting different number of components (axis) and make predictions with those components

Example

Let's suppose we like to predict an outcome given 401 variables and 60 observations
X original

Observed data

Observations

Predictions using only one component

Two components

More components:

- Low error
- > likelihood of overfitting

For partial least squares regression, within sample tests can lead to over fitting

How do we avoid over fitting with cross validation?

Cross-Validation

Definition: Using different samples to model and predict

- hold-out: you use the unique dataset you have to make random partitions, one to model and the other to predict

Other forms of out of sample sampling

- Bootstrapping : random sampling with replacement

> Let's use an example to illustrate the problem of overfitting and how hold-out cross validation can minimize it

Imagine an "executive functioning" score is related to mean functional connectivity

The modeler does not know the model structure but it is given by a third order polynomial:

$x=$ mean fconn between the Fronto-parietal and default networks

$$
\text { score }=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}
$$

Data was measured on multiple participants

However, data was collected on two sites

and each site has a different scanner's noise profile,

Noise profile in mean fconn

which leads to significant batch effects.

We, however, only have access to OHSU data.

Modeling approach

- Predict executive functioning score based on mean fconn using polynomials of different order
- Starting from simplest to more complex models
- Estimate "goodness of the fit" (mean square errors in predictions)
- Select the model with the "best fit" i.e., lowest error

First order

Polynomial order	Mean Square Error
	OHSU

Second order

Polynomial order	Mean Square Error
	OHSU
$\mathbf{1}$	22.35
$\mathbf{2}$	21.22

Third order

Polynomial order	Mean Square Error
	OHSU
$\mathbf{1}$	22.35
$\mathbf{2}$	21.22
$\mathbf{3}$	16.21

Fourth order

Polynomial order	Mean Square Error
	OHSU
$\mathbf{1}$	22.35
$\mathbf{2}$	21.22
$\mathbf{3}$	16.21
$\mathbf{4}$	15.61

Fifth order

Polynomial order	Mean Square Error
	OHSU
$\mathbf{1}$	22.35
$\mathbf{2}$	21.22
$\mathbf{3}$	16.21
$\mathbf{4}$	15.61
$\mathbf{5}$	14.14

Sixth order

Polynomial order	Mean Square Error
	OHSU
$\mathbf{1}$	22.35
$\mathbf{2}$	21.22
$\mathbf{3}$	16.21
$\mathbf{4}$	15.61
$\mathbf{5}$	14.14
$\mathbf{6}$	14.13

Fifth order seems to be the best fit

Polynomial order	Mean Square Error
	OHSU
$\mathbf{1}$	22.35
$\mathbf{2}$	21.22
$\mathbf{3}$	16.21
$\mathbf{4}$	15.61
$\mathbf{5}$	14.14
$\mathbf{6}$	14.13

Let's use OHSU's models on Minn's data

First order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16

Second order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16
$\mathbf{2}$	21.22	23.27

Third order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{2}$	22.35	23.16
$\mathbf{3}$	21.22	23.27
	16.21	39.03

Third order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16
$\mathbf{2}$	21.22	23.27
$\mathbf{3}$	16.21	39.03

Fourth order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16
$\mathbf{2}$	21.22	23.27
$\mathbf{3}$	16.21	39.03
$\mathbf{4}$	15.61	36.77

Fifth order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{2}$	22.35	23.16
$\mathbf{3}$	21.22	23.27 n
$\mathbf{4}$	16.21	39.03
$\mathbf{5}$	15.61	36.77
	14.14	44.55

Sixth order

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16
$\mathbf{2}$	21.22	23.27
$\mathbf{3}$	16.21	39.03
$\mathbf{4}$	15.61	36.77
$\mathbf{5}$	14.14	44.55
$\mathbf{6}$	14.13	49.96

Take-home message

Testing performance on the same data used to obtain a model leads to overfitting. Do not do it.

How to know that the best model is a third order polynomial?

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16
$\mathbf{2}$	21.22	23.27
$\mathbf{3}$	16.21	39.03
$\mathbf{4}$	15.61	36.77
$\mathbf{5}$	14.14	44.55
$\mathbf{6}$	14.13	49.96

How to know that the best model is a third order polynomial?

Polynomial order	Mean Square Error	
	OHSU	Minn
$\mathbf{1}$	22.35	23.16
$\mathbf{2}$	21.22	23.27
$\mathbf{3}$	16.21	39.03
$\mathbf{4}$	15.61	36.77
$\mathbf{5}$	14.14	44.55
$\mathbf{6}$	14.13	49.96

Use hold-out cross-validation!

Let's use hold-out cross-validation to fit the most generalizable model for this data set

Make two partitions: Let's use 90\% of the sample for modeling and hold 10\% out for testing

Use the partition modeling to fit the simplest model.

Then predict in-sample and out-sample data

A reasonable cost function is the mean of the sum of squares's residuals

Resample and repeat

Keep track of the errors.

Pol. order $=1$, mod error $=0.10$, val. error $=0.25$ Single realization

Repeat N times

Pol. order $=1$, mod error $=0.10$, val. error $=0.37$
Single realization

Increase model complexity,

Increase order complexity

Keep track of the errors.

Pol. order $=2$, mod error $=0.10$, val. error $=0.10$ Single realization

Third order

Fourth order

Distributions of errors ($\mathrm{N}=1000$)

Visualize results

Pick the best (lowest out-ofsample prediction)

Notice how the in-sample (modeling) error decreases as order increases: OVERFITTING

Take-home message

Cross-validation is a useful tool towards predictive modeling.
Partial-least squares regression requires cross-validation for predictive modeling to avoid overfitting

Generating Null hypothesis data

Why is it important to generate a null distribution?

How do you know that your model behaves better than chance?

- What is chance in the context of modeling and hold-out cross-validation?

Let's suppose this is your data

Original data

$$
\begin{aligned}
& 9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21 \\
& -x_{1}+9 x_{2}+\cdots+2 x_{n}=19 \\
& 2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77 \\
& 1 x_{1}-6 x_{2}+\cdots+1 x_{n}=20 \\
& 7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62
\end{aligned}
$$

Make two random partitions: modeling and validation

Original data

$$
\begin{aligned}
& 9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21 \\
& -x_{1}+9 x_{2}+\cdots+2 x_{n}=19 \\
& 2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77 \\
& 1 x_{1}-6 x_{2}+\cdots+1 x_{n}=20 \\
& 7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62
\end{aligned}
$$

Modeling
$9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21$
$2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77$
$1 x_{1}-6 x_{2}+\cdots+1 x_{n}=20$

Validation

$$
-x_{1}+9 x_{2}+\cdots+2 x_{n}=19
$$

$$
7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62
$$

Randomize predictor and outcomes in the partition used for modeling

Original data

$$
\begin{aligned}
& 9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21 \\
& -x_{1}+9 x_{2}+\cdots+2 x_{n}=19 \\
& 2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77 \\
& 1 x_{1}-6 x_{2}+\cdots+1 x_{n}=20 \\
& 7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62
\end{aligned}
$$

Modeling

Validation
$-x_{1}+9 x_{2}+\cdots+2 x_{n}=19$
$7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62$

Estimate out-of-sample performance:

Original data
$9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21$
$-x_{1}+9 x_{2}+\cdots+2 x_{n}=19$
$2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77$
$1 x_{1}-6 x_{2}+\cdots+1 x_{n}=20$
$7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62$

$$
-x_{1}+9 x_{2}+\cdots+2 x_{n}=19
$$

$$
7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62
$$

- Calculate the model in the partition "Modeling"
- Predict outcome on the partition "Validation"
- Estimate "goodness of the fit": mean square error

Repeat and keep track of the errors

Original data
$9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21$
$-x_{1}+9 x_{2}+\cdots+2 x_{n}=19$
$2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77$
$1 x_{1}-6 x_{2}+\cdots+1 x_{n}=20$
$7 x_{1}-2 x_{2}+\cdots-9 x_{n}=62$

Modeling

Validation

$$
\begin{aligned}
& 9 x_{1}-7 x_{2}+\cdots-4 x_{n}=21 \\
& 2 x_{1}+7 x_{2}+\cdots+2 x_{n}=77
\end{aligned}
$$

- Calculate the model in the partition "Modeling"
- Predict outcome on the partition "Validation"
- Estimate "goodness of the fit": mean square error

Compare performance (mean squares error in out-of-sample data) to determine if your model predicts better than chance!

Very large effect size
$\mathrm{d}=1.98$

Alt. hypothesis
Null hypothesis

Example using Neuroimaging data cross-validation, regularization and PLSR

 fconn_regression tool
I'll use as a case the study of cueing in freezing of gait in Parkinson's disease

Freezing of gait, a pretty descriptive name, is an additional symptom present on some patients

Freezing can lead to falls, which adds an extra burden in Parkinson's disease

Auditory cues, like beats at a constant rate, are an effective intervention to reduce freezing episodes in some patients

Open loop

FIGURE 2 | Self-improving relationship between beat perception and gait training efficacy.

The goal of the study is to determine whether improvement after cueing can be predicted by resting state functional connectivity

Available data

Approach

1. Calculate rs-fconn

- Group data per functional network pairs: Default-Default, Default-Visual, ...

2. Use PLSR and cross-validation to determine whether improvement can be predicted using connectivity from specific brain networks
3. Explore outputs
4. Report findings

First step is to calculate resting state functional connectivity and group data per functional system pairs

PLSR and cross-validation

Parameters

This can be done using the tool fconn_regression

- Partition size
- Hold-one out
- Hold-three out
- How many components:
- 2, 3, 4,...
- Number of repetitions
- 100?, 500?,...
- Calculate null-hypothesis data
- Number of repetitions: 10,000 ?

Comparing distribution of prediction errors for real versus null-hypotheses data

 Sorted by Cohen effect size

 Sorted by Cohen effect size}

Auditory and default
Effect size $=0.81$

Auditory

Somatosensory lateral and Ventral attention

Effect size $=0.78$

Sml and VeA $\mathrm{d}=0.7824$

We have a virtual machine and a working example

Let us know if you are interested in a break-out session

Topics

- Partial-least squares Regression
- Feature Selection
- Cross-Validation
- Null Distribution/Permutations
- An Example
- Regularization
- Truncated singular value decomposition
- Connectotyping: model based functional connectivity
- Example: models that generalize across datasets!

Regularization

Truncated singular value decomposition

What about repeated measurements (real data with noise)

$$
4.0=2.0 A \rightarrow A=2.00
$$

$$
3.9=2.1 A \rightarrow A \approx 1.86
$$

Select the solution with the lowest mean square error!

$$
\begin{aligned}
{\left[\begin{array}{l}
4.0 \\
3.9
\end{array}\right] } & =\left[\begin{array}{l}
2.0 \\
2.1
\end{array}\right] A \\
y & =x A
\end{aligned}
$$

Using linear algebra (\boldsymbol{x} pseudo-inverse)

$$
\begin{gathered}
A=\left(x^{\prime} x\right)^{-1} x^{\prime} y \\
A \approx 1.9286
\end{gathered}
$$

This A minimizes \sum residuals ${ }^{2}$
\# Measurements < \# Variables
What about (real) limited data:

$$
8=4 \alpha+\beta
$$

There are 2 variables (α and β) and 1 measurements.

Solving the system:

$$
8-4 \alpha=\beta
$$

All the points on $\beta=8-4 \alpha$ solve the system.

In other words, there is an infinite number of solutions!

What if you can't reduce the number of features?

Regularization is a powerful approach to handle this kind of problems (ill-posed systems)

We know that the pseudo-inverse offers the optimal solution (lowest least squares) for systems with more measurements than observations

\# Measurements > \# Variables

What about repeated measurements (real data with noise)

$$
\begin{aligned}
& 4.0=2.0 A \rightarrow A=2.00 \\
& 3.9=2.1 A \rightarrow A \approx 1.86
\end{aligned}
$$

Select the solution with the lowest mean square error!

$$
\begin{aligned}
{\left[\begin{array}{l}
4.0 \\
3.9
\end{array}\right] } & =\left[\begin{array}{l}
2.0 \\
2.1
\end{array}\right] A \\
y & =x A
\end{aligned}
$$

Using linear algebra (\boldsymbol{x} pseudo-inverse)

$$
A=\left(x^{\prime} x\right)^{-1} x^{\prime} y
$$

$$
A \approx 1.9286
$$

This A minimizes \sum residuals ${ }^{2}$

We can use the pseudo-inverse to calculate a solution in systems with more measurements than observations

Example: Imagine a given outcome can be predicted by 379 variables,...

1) $y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379}$

And that you have 163 observations:

$$
\begin{aligned}
& \text { 1) } y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379} \\
& \text { 2) } y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379} \\
& \text { 3) } y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379} \\
& \cdots \\
& \text { 163) } y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379}
\end{aligned}
$$

Using the pseudo-inverse you can obtain a solution with high predictability

Using the pseudo-inverse you can obtain a solution with high predictability

This solution, however, is problematic:
*unstable beta weights *over fitting *not applicable to outside
dataset

What does "unstable beta weights" mean?

Let's suppose age and weight are two variables used in your model

For one participant you used

- Age: 10.0 years
- Weight: 70 pounds
- Corresponding outcome: "score" of 3.7

There was, however, an error in data collection and the real values are:

- Age: 10.5 years
- Weight: 71 pounds

Updating predictions in the same model

Let's suppose age and weight are two variables used in your model

For one participant you used

- Age: 10.0 years
- Weight: 70 pounds
- Corresponding outcome: "score" of 3.7

Stable beta-weights:
score ~ 3.9

Unstable beta weights:
score ~ $-344,587.42$

There was, however, an error in data collection and the real values are:

- Age: 10.5 years
- Weight: 71 pounds

What is the best solutions for the system?

$$
\begin{array}{rc}
\text { 1) } & y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379} \\
\text { 2) } & y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379} \\
\text { 3) } & y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379} \\
& \cdots \\
\text { 163) } y=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots \beta_{379} x_{379}
\end{array}
$$

$$
y=X \beta
$$

Remember the PCA section?

We said that we can rotate X (the data) to find optimal projections

We can use different number of axis

Adding more axis leads to:

- More explained variance
- More over-fitting

In truncated singular value decomposition, we follow a similar approach

- Decompose X in such a way that we can explore effect of inclusion/exclusion of components (singular value decomposition)

$$
\begin{gathered}
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & 0 \\
0 & \cdots & \sigma_{M}
\end{array}\right], \\
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{M} \geq 0 .
\end{gathered}
$$

The smaller singular values of X are more unstable (susceptible to noise)

In truncated singular value decomposition, we follow a similar approach

- Decompose X in such a way that we can explore effect of
inclusion/exclusion of components (singular value decomposition)
- Make a new X truncating some components

$$
\begin{gathered}
X=U \Sigma V^{T} \\
\Sigma_{\text {truncated }}=\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & 0 \\
0 & \cdots & 0
\end{array}\right],
\end{gathered}
$$

$$
X_{\text {truncated }}=U \Sigma_{\text {truncated }} V^{T}
$$

In truncated singular value decomposition, we follow a similar approach

- Decompose X in such a way that we can explore effect of
inclusion/exclusion of components (singular value decomposition)
- Make a new X truncating some components
- Solve the system plugging $X_{\text {truncated }}$ into the pseudo-inverse

$$
\beta_{\text {truncated }}=\left(X_{\text {truncated }} X_{\text {truncated }}\right)^{-1} X_{\text {truncated }} y
$$

In truncated singular value decomposition, we follow a similar approach

- Decompose X in such a way that we can explore effect of
inclusion/exclusion of components (singular value decomposition)
- Make a new X truncating some components
- Solve the system plugging $X_{\text {truncated }}$ into the pseudo-inverse
- Select the optimal number of components

Let's get back to our example: 379 variables and 163 observations

Unstable Pseudo-inverse solution

Solving the system preserving only the largest singular value

Preserving two singular values

Keeping 3

All minus one

Keeping all

You can select the "optimal" number of components using cross-validation and maximizing predictions of out-of-sample data

Use tsvd and cross-validation
*more stable beta weights
*less over fitting
*applicable to outside dataset

Section's summary

- Testing performance on the same data used to obtain a model leads to overfitting. Do not do it. Use cross-validation instead.
- Modeling is hard, especially when the number of "unknowns" exceeds the number of measurements: "ill-posed" systems
- These types of problems are common on neuroimaging projects
- Regularization and cross-validation can minimize the risk of overfitting and lead to better out-of-sample performance

Towards estimates of functional connectivity that generalize across datasets

Correlations might not be enough with limited data (~ 5 mins)

Connectotyping

The activity of each brain region can be predicted by the weighted contribution of all the other brain regions

Connectotyping: Model Based Fingerprinting of the Functional Connectome

How can we make an educated guess of "blue" given "red" and "green"

We can combine them linearly and estimate the beta weights

And formulate this mathematically

Notice that blue does not depend on blue

Repeat approach for red

And green

Which can be represented as a 3×3 matrix

Matricial form

$$
\begin{aligned}
& \hat{r}_{1}=0 r_{1}+\beta_{1,2} r_{2}+\beta_{1,3} r_{3} \\
& \hat{r}_{2}=\beta_{2,1} r_{1}+0 r_{2}+\beta_{2,3} r_{3} \\
& \hat{r}_{3}=\beta_{3,1} r_{1}+\beta_{3,2} r_{2}+0 r_{3}
\end{aligned} \quad\left[\begin{array}{l}
\hat{r}_{1} \\
\hat{r}_{2} \\
\hat{r}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{0} & \beta_{1,2} & \beta_{1,3} \\
\beta_{2,1} & \mathbf{0} & \beta_{2,3} \\
\beta_{3,1} & \beta_{3,2} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]
$$

General case ("M" instead of 3 ROIs):

A bigger matrix

General case

$$
\left[\begin{array}{c}
\hat{r}_{1} \\
\hat{r}_{2} \\
\vdots \\
\hat{r}_{M}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \beta_{1,2} & \ldots & \beta_{1, M} \\
\beta_{2,1} & 0 & \ldots & \beta_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{M, 1} & \beta_{M, 2} & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{M}
\end{array}\right]
$$

III-posed system (more unknowns that data)
Solved by regularization and cross validation

And the solution is an individualized connectivity matrix

General case

$$
\left[\begin{array}{c}
\hat{r}_{1} \\
\hat{r}_{2} \\
\vdots \\
\hat{r}_{M}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \beta_{1,2} & \ldots & \beta_{1, M} \\
\beta_{2,1} & 0 & \ldots & \beta_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{M, 1} & \beta_{M, 2} & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{M}
\end{array}\right]
$$

Connectivity matrices (models) can be compared

Subject 1

$$
\left[\begin{array}{c}
\hat{r}_{1} \\
\hat{r}_{2} \\
\vdots \\
\vdots \\
\hat{r}_{M}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \beta_{1,2} & \ldots & \beta_{1, M} \\
\beta_{2,1} & 0 & \ldots & \beta_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{M, 1} & \beta_{M, 2} & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{M}
\end{array}\right]
$$

Subject 2

$$
\left[\begin{array}{c}
\hat{r}_{1} \\
\hat{r}_{2} \\
\vdots \\
\hat{r}_{M}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \beta_{1,2} & \ldots & \beta_{1, M} \\
\beta_{2,1} & 0 & \ldots & \beta_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{M, 1} & \beta_{M, 2} & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{M}
\end{array}\right]
$$

Subject 3

$$
\left[\begin{array}{c}
\hat{r}_{1} \\
\hat{r}_{2} \\
\vdots \\
\hat{r}_{M}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \beta_{1,2} & \ldots & \beta_{1, M} \\
\beta_{2,1} & 0 & \ldots & \beta_{2, M} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{M, 1} & \beta_{M, 2} & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{M}
\end{array}\right]
$$

- models can also predict brain activity

To predict brain activity

- Start with the original fMRI data (after cleaning)

Next, split the data randomly in 2 sections:
One for modeling, the other for prediction

Use the section modeling for connectotyping

Calculate the beta weights (connectivity matrix)!

Fresh data
$ノ$
\qquad

Use the matrix to predict brain activity in fresh data

0.00	-0.37	0.70
0.88	0.00	0.42
0.60	-0.67	0.00

> Fresh data

Predicted data

Compare fresh data with predicted data

You may use correlation coefficients!

Validation

Data sets

HUMANS:

- 27 healthy adult humans (16 females)
age 19 to 35 years
- Subset scanned a second time
two weeks later
(Validated in data from 11 macaques too)

Validation

Step 1

Approach:

1. A model was calculated for each participant using partial data

Validation

Step 2

Approach:

1. A model was calculated for each
participant using partial data
2. Each model was used to predict fresh data for each scan

Validation

Step 3

Approach:

1. A model was calculated for each
participant using partial data
2. Each model was used to predict fresh
data for each scan
3. Average correlation between predicted and observed timecourses was calculated

When the model and fresh data came from the same participants, $\bar{R} \approx \mathbf{0 . 8 7}$

When the model and fresh data came from different participants, $\overline{\boldsymbol{R}} \approx \mathbf{0 . 6 4}$

Notice that by looking at a single number $(\overline{\boldsymbol{R}})$ we can characterize individuals, since there was no overlap in predicting self versus others

As further validation, we predicted fresh data acquired 2 weeks later, finding the same trend:

Same trend is also observed in macaques

 \boldsymbol{R} are reduced

These findings suggest that

We are all equipped with functional networks that process certain stimuli in the same way

These findings suggest that

So, the next question is

"What brain systems make a connectome unique"

To do this, we look at how similar or different the models were across participants

Variance Across Subjects

Fronto-parietal cortex makes a connectome unique

In contrast, notice how similar motor systems are across individuals

How much data is needed to connectotype?

2.5 minutes of data is enough to connectotype!

Average prediction, tsvd

- Self vs others experiment was repeated using different amounts of data
- 2.5 minutes of data is enough to connectotype!

In summary, connectotyping

Identifies connectivity patterns unique to individuals

The connectotype is robust in adults and can be obtained with limited amounts of data
fronto-parietal systems are highly variable amongst individuals.

Can we use connectotyping in youth?

Participants

Controls passing QC:

- $N=188$ scans (159 subjects)
- 131 subjects with 1 scan
- 27 subjects with 2 scans
- 1 subjects with 3 scans
- Age: 7-15
- 60\% males
- Siblings (16 pairs)
- 16 families with 2 siblings each
"Gordon" parcellation schema

Gordon et al, Cerebral Cortex, 2014

Connectotyping in youth

Step 1

Approach:

1. A model was calculated for each scan
($\mathrm{N}=188$)

Connectotyping in youth

Step 2

Approach:

1. A model was calculated for each scan ($\mathrm{N}=188$)
2. Each model was used to predict fresh data for each scan ($\mathrm{N}=188 \times 188 \times$ ROIs)

Connectotyping in youth

Step 3

Approach:

1. A model was calculated for each scan ($\mathrm{N}=188$)
2. Each model was used to predict fresh data for each scan ($\mathrm{N}=188 \times 188 \times$ ROIs)
3. Average correlation between predicted and observed timecourses were calculated ($\mathrm{N}=188 \times 188$)

Connectotyping in youth

Step 4

Approach:

1. A model was calculated for each scan ($\mathrm{N}=188$)
2. Each model was used to predict fresh data for each scan ($\mathrm{N}=188 \times 188 \times$ ROIs)
3. Average correlation between predicted and observed timecourses were
calculated ($\mathrm{N}=188 \times 188$)
4. Average correlations were grouped based on the datasets used for modeling and prediction
I. Same scan
II. Same participant
III. Sibling
IV. Unrelated

Connectotyping in youth

Predicting time courses

Predicting fresh data from the same scan

Distributions of correlations (per group)

```
Same
scan
```

($\mathrm{N}=188$)

Predicting data from the same participant acquired 1 or 2 years later

Distributions of correlations (per group)

Difference in years when data was acquired

Predicting timecourses amongst siblings

Distributions of correlations (per group)

Predicting timecourses amongst unrelated

Characterization of individuals are stable (at least over a period of 2 years)

Distributions of correlations (per group)

($\mathrm{N}=35,050$)

Siblings cluster together higher than unrelated

Distributions of correlations (per group)

($\mathrm{N}=35,050$)
Miranda-Domínguez O, et al. Heritability of the human connectome: A

These findings suggest that

The connectotype is similarly predictive in
children as shown in adults, across a wider timespan, and some features appear to be familial

What if we now use multivariate statistics (instead of using the average correlation) to compare connectomes?

Can we identify heritable patterns of functional connectivity?

- Some mental disorders run strongly among families
- It might be useful to identify what is the "baseline" shared connectome across siblings?

There is evidence of similar thoughts among siblings

http://edition.cnn.com/2015/09/06/tennis/tennis-venus-serena-bouchard/

http://www.tampabay.com/news/politics/national/bush-dynasty-continues-to-impact-republican-politics/1248057

Datasets

OHSU

Data from 32 unique participants
5 mins of low-head movement of RS
7-15 yo, 60\% males
Siblings (16 pairs)
16 families with 2 siblings each

Human Connectome Project

Data from 198 unique participants
1 hour of data each
22-36 yo, 45\% males
79 pairs of siblings:

- 10 identical twins
- 11 non-identical twins
- 58 sibling non-twins

Approach

Within dataset

- Calculate functional connectivity
- Connectotyping
- Correlations
- Compared each participant pair
- Connectotyping: predicting timecourses
- Correlations: spatial correlations
- Train classifiers (SVM) to identify each pair of participants as siblings or unrelated

Between datasets

- Test classifiers' performance across datasets

Within OHSU results Out-of-sample performance

Within HCP results Out-of-sample performance

Miranda-Domínguez O, et al. Heritability of the human connectome: A connectotyping study. Netw Neurosci 2018.

Connectotyping
Correlations

Within HCP results
 Out-of-sample performance

Predictions across datasets Only connectotyping was able to predict kinship

Heritability of the human connectome:
 A connectotyping study

Oscar Miranda-Dominguez ${ }^{1}$, Eric Feczko ${ }^{1}$, David S. Grayson ${ }^{1,4}$, Hasse Walum ${ }^{5}$, Joel T. Nigg ${ }^{1,2}$, and Damien A. Fair ${ }^{1,2,3}$
${ }^{1}$ Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
${ }^{2}$ Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
${ }^{3}$ Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA ${ }^{4}$ Center for Neuroscience, University of California, Davis, Davis, CA, USA
${ }^{5}$ Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA

Keywords: Development, Heritability, Effective connectivity, MRI, Functional connectivity, Resting-state MRI

Rules of thumb

- In selecting predictor variables
- Make sure predictor variables are related to outcome
- Try to select variables with the lowest redundancy
- It is better to have more observations than variables
- Regardless of modeling framework, you should use
- Cross-validation to have an estimate of out-of-sample performance
- Regularization to obtain more stable beta weights
- Test performance on null data, to determine whether your models predict better than chance

Acknowledgements

DCAN Lab

AJ Mitchell
Alice Graham
Alina Goncharova
Anders Perrone
Anita Randolph
Anjanibhargavi Ragothaman
Anthony Galassi
Bene Ramirez
Binyam Nardos
Damien Fair
Elina Thomas
Eric Earl

Eric Feczko

Greg Conan
Johnny Uriarte-Lopez
Kathy Snider
Lisa Karstens
Lucille Moore
Michaela Cordova
Mollie Marr
Olivia Doyle
Robert Hermosillo
Samantha Papadakis
Thomas Madison

Members of the DCAN Lab

