
 1 

Neuropointillist Introduction – MDC ABCD Workshop July 2021 
 
Purpose 
This is a laptop-based introduction to neuropointillist. To run realistic and interesting models, 
you will probably need access to a cluster. 
 
Conventions 
You will be typing commands in a terminal window in a UNIX environment of some type (either 
MacOS, Linux, or the Linux Subsystem for Windows). Commands and file names are indicated in 
courier font. Steps that are not just informational, where you have to do something, are 

highlighted in yellow. 
 
Before We Begin 
Hopefully you have been able to follow the installation instructions on 
http://ibic.github.io/neuropointillist/installation.html to install the package and prerequisites 
on your laptop. 
 
Make sure you have the most up to date version of the files. 
 
1. If you have used git to install the package, update them using git: 

 
cd neuropointillist 

git pull origin master 

<type git username> 
<type git password> 
 

2. If you downloaded the package as a zip file and unpacked it, do that again. 
wget https://github.com/IBIC/neuropointillist/archive/master.zip 

unzip master.zip 

mv neuropointillist neuropointillist.old 

mv neuropointillist-master neuropointillist 

 

If you do not have the command wget, you can simply go to the URL in your browser and 
save the file to someplace you can find it! 
 
Make sure that the neuropointillist directory is in your path. If you are not sure, from a 
terminal window type: 
 
export PATH=$PATH:~/neuropointillist 

 
 
Walkthrough 
 

http://ibic.github.io/neuropointillist/installation.html
https://github.com/IBIC/neuropointillist/archive/master.zip


 2 

Cd into the neuropointillist directory (top level). In the neuropointillist directory, there 
are three executables: 
npoint 

npointmerge 

npointrun 

 
npoint is the main executable that runs the R functions that read in a bunch of 4d fMRI or 3d 
statistics files and a model file and either splits them up into jobs to be run on a cluster, or runs 
them in parallel. 
 
npointrun is used to run individual jobs. 
 
npointmerge is used to merge all the results of split up jobs into output files. 
 
cd into the directory example.rawfmri. 

This directory has an example of simulated fMRI data and a model to show you how to set up 
an analysis of raw fMRI data.  
 
Edit the file readargs.R with your favorite text editor. 
 
This file is a convenience file that, if it exists in a particular directory, specifies the arguments 
for npoint. You could just as easily create a bash script to call npoint with the correct 
arguments, but I thought this approach helped keep all the files straight. 
 
The arguments specify the following: 
-m mask_4mm.nii.gz: This is a NiFTI file that contains a “1” in every voxel that should be 
analyzed and a “0” in every voxel you would like to ignore. Because we only analyze voxels that 
are in the brain, in grey matter, or in a particular structure, the mask greatly cuts down on 
computation time.  To shorten the time to run the example, replace this file with 
oneslice_4mm.nii.gz.  

 
-set1 setfilenames1.txt 

-set2 setfilenames2.txt 

The “setfilenames”options specify lists of files for each timepoint. They can be absolute paths 
or relative from the directory that you are in.  You can specify up to five lists of files using 
command line flags. 
 
-setlabels1 setlabels.csv 

-setlabels2 setlabels.csv 

The “setlabels” options specify any important information (subject numbers, occasion of 
measurement, covariates such as age or gender) for the corresponding setfile.  
 
There is no rule that setfiles need to consist of data from only one timepoint. It is only a 
convenience to help people organize data from longitudinal studies. You can put all the 



 3 

information that you need to model in one setfilenames file and one corresponding setlabels 
file. 
 
npoint does the following: 

1. It reads the mask and every one of the files listed in the setfiles. 
2. It identifies the voxels in the mask. 
3. If the files are 3D statistical output from a first level analysis, or any other 3D file (dirty 

secret – you can put ANYTHING IN HERE), it collapses the 3D file into a 1D vector where 
the columns are different voxels in the mask.  

4. If the files are 4D fMRI files, it collapses each 4D file into a 2D matrix where the columns 
are different voxels in the mask and the rows are TRs. 

5. It reads the comma-separated-value setfiles. The names of the columns are the  
6. It makes sure that the number of rows in each setfiles corresponds to the number of 

rows generated by steps 3 or 4. In other words, if you are using 4D data, you need to 
provide a row for each TR. Each row might contain the convolved values of each 
explanatory variable.  

7. It creates the data structures “voxeldat” with the collapsed MR data, and the 
“designmat” with the data that is used to model the MR data.  

 
-model fmrimodel.R 

This flag specifies the code that you provide. This code will be run on each voxel from the 
voxeldat and “attaches” to the variables in the designmat so that you can use those variables in 
ANY WAY and save ANY THINGS out to files.  
 
-output sgedata/sim 

This flag specifies a prefix for all the output files.  
 
-debug debug.Rdata 

It is helpful when developing your model to test it. This debug flag specifies to write out the 
data structures into an Rdata file that you can read into R, to more closely figure out what is 
going on in particular voxels. 
 
-sgeN 10 

This flag specifies how many pieces to split up the processing. 
 
Edit fmrimodel.R 

I won’t talk a lot more about the model here – the important things to note are: 
 

1. You define a processVoxel command in R that takes a voxel number (v) from the 
collapsed voxeldat structure.  

2. Because you don’t want the code to die if there is an error at one voxel (when there are 
so many!) you need to trap errors carefully and make sure to return some value that 
you can interpret as an error (and go back to the debug file as necessary) 



 4 

3. You can return any number of values. The names that you give them are used to 
construct the output filenames. 

 
Run npoint 
 
This will read the arguments described above and generate a directory called sgedata with 
the output files. It will not actually run the model. 
 
cd into sgedata 
 
Here you can see a variety of files. Each chunk has a corresponding NiFTI file mask (with the 
.nii.gz extension) and its representation for R (with an .rds extension). You can also see the 
debug.Rdata file.  

 
The files that are used to actually run the model begin with “runme”. In this example, we ignore 
runme.sge, because you probably do not have access to a cluster that runs the Sun/Open 
Gridengine software. In the advanced workshop I will show you how to run the software on the 
Slurm Cluster.  
 
Try running runme.local: 
 
./runme.local 

 
You need to specify the “./” in front of runme.local, because it is a command that is not in your 
PATH environment variable. (This is a UNIX thing). 
 
This command will call the npointrun command to run each individual job, one by one 
(sequentially). When they are all finished, it will merge the outputs together using 
npointmerge. 

 
 


