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Longitudinal Data Structure

• Person-level dataset [multivariate, wide-dataset]
• Each subject has one row [or record]
• Repeated measures appear as additional variables
• No explicit “time” variable

• Person-period dataset [univariate, long-dataset]
• A subject identifier
• A time indicator
• Outcome variable[s]
• Predictor variable[s]



Example Data

Data comes from the National Youth Survey (Raudenbush & Chan, 1992)

Five waves, ages 11 - 15

• TOL, Tolerance of deviant behavior
(1 = very wrong, 4 = not wrong at all)

• MALE, 1 for male, 0 for female

• EXP, self reported exposure to deviant behavior at age 11
(0 =none, 4 =all).



“Person-level” Data Set

ID TOL11 TOL12 TOL13 TOL14 TOL15 MALE EXP

9 2.23 1.79 1.90 2.12 2.66 0 1.54
45 1.12 1.45 1.45 1.45 1.99 1 1.16

268 1.45 1.34 1.99 1.79 1.34 1 0.90
314 1.22 1.22 1.55 1.12 1.12 0 0.81
442 1.45 1.99 1.45 1.67 1.90 0 1.13
514 1.34 1.67 2.23 2.12 2.44 1 0.90
569 1.79 1.90 1.90 1.99 1.99 0 1.99
624 1.12 1.12 1.22 1.12 1.22 1 0.98
723 1.22 1.34 1.12 1.00 1.12 0 0.81
918 1.00 1.00 1.22 1.99 1.22 0 1.21
949 1.99 1.55 1.12 1.45 1.55 1 0.93
978 1.22 1.34 2.12 3.46 3.32 1 1.59

1105 1.34 1.90 1.99 1.90 2.12 1 1.38
1542 1.22 1.22 1.99 1.79 2.12 0 1.44
1552 1.00 1.12 2.23 1.55 1.55 0 1.04
1653 1.11 1.11 1.34 1.55 2.12 0 1.25



“Person-period” Data Set

ID MALE EXP AGE TOL

9 0 1.54 11 2.23
9 0 1.54 12 1.79
9 0 1.54 13 1.90
9 0 1.54 14 2.12
9 0 1.54 15 2.66

45 1 1.16 11 1.12
45 1 1.16 12 1.45
45 1 1.16 13 1.45
45 1 1.16 14 1.45
45 1 1.16 15 1.99

. . . . .

. . . . .

1653 0 1.25 11 1.11
1653 0 1.25 12 1.11
1653 0 1.25 13 1.34
1653 0 1.25 14 1.55
1653 0 1.25 15 2.12



Exploring Longitudinal Data



Exploring Longitudinal Data: Non-parametric Summaries
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Exploring Longitudinal Data: Fi�ed OLS Trajectories
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Exploring Longitudinal Data
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(a) Fi�ed OLS
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(b) Smooth non-parametric



Exploring Longitudinal Data, by Male/Female
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Exploring Longitudinal Data, by Exposure (High > 1.145)
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The Multilevel Model for Change



The Multilevel Model for Change

The first example is limited to:
• Linear change model
• Time-structured data set
• Evaluation of one time-invariant dichotomous predictor



Example Data

• Data comes from Burchinal et al. (1997)
• 103 African-American infants born into low-income families
• At 6 months old, approximately half the sample (n = 53) were randomly assigned

to participate in an intensive early intervention program designed to enhance
cognitive functioning
• The remaining children (n = 45) were assigned to a control group
• Infants assessed 12 times between ages 6 and 96 months



Example Data

• 3 waves of data–each child has three records
• AGE (in years) is the child’s age at each assessment (1, 1.5, or 2)
• COG is the child’s cognitive performance score at each assessment
• PROGRAM is a dichotomous covariate, 1= treatment and 0= control



Example Data

ID COG AGE PROGRAM

68 103 1.0 1
68 119 1.5 1
68 96 2.0 1

70 106 1.0 1
70 107 1.5 1
70 96 2.0 1

. . . .

. . . .

984 106 1.0 0
984 89 1.5 0
984 99 2.0 0

985 112 1.0 0
985 96 1.5 0
985 88 2.0 0



Empirical Growth Plots: Fi�ed OLS Trajectories
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The Multilevel Model for Change

Yij = π0i + π1i(AGEij − 1) + εij

π0i = γ00 + γ01(PROGRAMi) + ζ0i

π1i = γ10 + γ11(PROGRAMi) + ζ1i,

εij ∼ N (0, σ2ε) and
[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ20 σ201
σ210 σ21

])
• The Level-1 Submodel

• Describes how each person changes over time
• Research questions about within-person change

• The Level-2 Submodel
• Describes how these changes di�er across people.
• Research questions about between-person change



The Level-1 Submodel

Yij = [π0i + π1i(AGEij − 1)] + [εij]

Where,
• Yij represents the value of COG for child i at time j

• i runs from 1 to 103
• j runs from 1 to 3

• Brackets distinguish between the structural part and the stochastic part of the model
• The structural part parallels the concept of “true score”
• The stochastic part parallels the concept of “measurement error”



The Structural Part of the Level-1 Submodel

Yij = [π0i + π1i(AGEij − 1)] + [εij]

Our hypothesis about the shape of each subject’s true trajectory of change over time
• π0i represents child i’s true initial cognitive performance (at age 1).

• π01 is the intercept for child 1
• π02 is the intercept for child 2

• π1i represents the slope of the postulated individual change trajectory
• If π1i is positive, subject i’s outcome increases over time



The Stochastic Part of the Level-1 Submodel

Yij = [π0i + π1i(AGEij − 1)] + [εij]

• εij represents the e�ect of random error associated with individual i at time j
• εij is unobserved so we must make assumptions about the distribution of level 1 residuals

from occasion to occasion and from person to person.



The Stochastic Part of the Level-1 Submodel

εij
iid∼ N (0, σ2ε)

• “Classical” assumptions specify residuals as independently and identically distributed
(“iid”), with homoscedastic variance across occasions and individuals.
• Classical assumptions may not hold with longitudinal data as residuals may be

autocorrelated and heteroscedastic over time.



The Level-2 Submodel

π0i = [γ00 + γ01(PROGRAMi)] + [ζ0i]

π1i = [γ10 + γ11(PROGRAMi)] + [ζ1i]

Where,
• π0i and π1i represents the level-1 change parameters–initial status and linear growth
• Brackets distinguish between the structural part and the stochastic part of the model

• The structural part parallels the concept of “true score”
• The stochastic part parallels the concept of “measurement error”



The Structural Part of the Level-2 Submodel

π0i = [γ00 + γ01(PROGRAMi)] + [ζ0i]

π1i = [γ10 + γ11(PROGRAMi)] + [ζ1i]

Where,
• γs represent the level-2 regression parameters–known as fixed e�ects
• Fixed e�ects capture inter individual di�erences in the true change trajectory
• Interpret fixed e�ects as a prototypical individual:

• γ00 represents the average initial status for children not enrolled in the treatment
(PROGRAM = 0)

• γ10 represents the average annual growth for children not enrolled in the treatment
(PROGRAM = 0)

• γ00 + γ01 represents the average initial status for children enrolled in the treatment
(PROGRAM = 1)

• γ10 + γ11 represents the average annual growth for children enrolled in the treatment
(PROGRAM = 1)



The Stochastic Part of the Level-2 Submodel

π0i = [γ00 + γ01(PROGRAMi)] + [ζ0i]

π1i = [γ10 + γ11(PROGRAMi)] + [ζ1i]

Where,
• ζ represent the residuals–what remained unexplained by the fixed e�ects
• Less interested in values of ζ than in the population summaries of the variances σ20 and σ21 ,

and covariance σ2



The Stochastic Part of the Level-2 Submodel

[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ20 σ01
σ10 σ21

])
Standard assumption about the level-2 residuals:
• Bivariate normal distribution
• Mean of zero
• Unknown variance and covariance parameters



Model Results

Parameter Estimate ase 95% CI

Fixed E�ects
π0i, Initial status γ00, Intercept 107.84 2.04 [103.85,111.83]

γ01, PROGRAM 6.86 1.88 [1.54,12.17]
π0i, Rate of change γ10, Intercept −21.13 1.88 [−24.83,−17.44]

γ11, PROGRAM 5.27 2.51 [0.35,10.19]

Variance Components
Level 1: σ2

ε 74.76

Level 2: σ2
0 123.97
σ2
1 10.10
σ01 −35.38



Interpreting Fixed E�ects

π̂0i = 107.84 + 6.86(PROGRAMi)

π̂1i = −21.13 + 5.27(PROGRAMi)

Where,
• 107.84 = Initial status (COG at age=1) for the average nonparticipant
• 6.86 = Di�erence in initial status for the average participant
• −21.13 = Annual rate of change for the average nonparticipant
• 5.27 = Di�erence in annual rate of change for the average participant



Fi�ed Change Trajectories in COG
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Single Parameter Tests for Fixed E�ects

Testing the statistical significance of fixed e�ects is similar to multiple regression where
H0 : γ = 0 and H1 : γ 6= 0
Test this hypothesis for each fixed e�ect by computing a z-statistic:

z =
γ̂

ase(γ̂)



Interpreting Variance Components

σ2ε = 74.76[
σ20 σ01
σ10 σ21

]
=

[
123.97 −35.38
−35.38 10.10

]
Where,
• Level-1 residual variance, σ2ε , summarizes within-person variability
• Level-2 variance components summarize between-person variability in change trajectories
• Single-parameter tests of significance for variance components can be highly inconsistent



Extending the Multilevel Model for Change



Extending the Multilevel Model for Change

• The composite formulation
• Unconditional means model and unconditional growth model
• Model building strategies



Adolescent Alcohol Use Data

• Curran, Stice, and Chassin (1997) collected 3 waves of data
• Time-structured data set of 82 adolescents beginning at age 14.

• ALCUSE, the level of alcohol consumption during the previous year
• AGE, the age of the child at the time of data collection
• PEER, a measure of alcohol use among the adolescent’s peers
• COA, a dichotomous covariate, indicating if the adolescent is a child of an alcoholic (1=yes,

0=no)

ALCUSE and PEER are generated by computing the square root of the sum of the
participants’ responses across each variable’s constituent items.



Composite Specification of the Multilevel Model for Change

Yij =π0i + π1iTIMEij + εij

π0i = γ00 + γ01COAi + ζ0i

π1i = γ10 + γ11COAi + ζ1i

Yij =π0i + π1iTIMEij + εij

=(γ00 + γ01COAi + ζ0i) + (γ10 + γ11COAi + ζ1i)TIMEij + εij

=γ00 + γ10TIMEij + γ01COAi + γ11(COAi × TIMEij)+

ζ0i + ζ1iTIMEij + εij



The Unconditional Means Model

Yij = γ00 + ζ0i + εij

εij ∼ N (0, σ2ε) and ζ0i ∼ N (0, σ20)

• Describes and partitions the outcome variation.
• Assumes the true individual change trajectory for person i is flat, si�ing at elevation
γ00 + ζ0i, or π0i.
• Average (grand mean) elevation, across everyone, is γ00.
• Partions the total outcome variation by within-person, σ2ε and between-person, σ20 .



Model Results

Model 1 Model 2 Model 3 Model 4 Model 5

Fixed E�ects
γ00, Initial status 0.922 0.651 0.316 −0.317 −0.314

(0.096) (0.105) (0.131) (0.148) (0.146)
γ01, COA 1.88 0.743 0.579 0.571

(0.195) (0.162) (0.146)
γ02, PEER 0.694 0.695

(0.112) (0.111)
γ10, Rate of change 0.271 0.293 0.429 0.425

(0.062) (0.084) (0.114) (0.106)
γ11, COA −0.049 0.014

0.125 (0.125)
γ12, PEER −0.150 −0.151

(0.086) (0.085)
Variance Components

σ2
ε 0.562 0.337 0.337 0.337 0.337
σ2
0 0.564 0.624 0.488 0.241 0.241
σ2
1 0.151 0.151 0.139 0.139
σ2 −0.068 −0.059 −0.006 −0.006



The Intraclass Correlation Coe�icient, lCC

ρ =
σ20

σ20 + σ2ε

=
0.564

0.562 + 0.564
=

0.564
1.126

= 0.501

• Describes the proportion of total variance that lies between people.
• Also know as the error autocorrelation coe�icient.



The Unconditional Growth Model

Yij = γ00 + γ10TIMEij + ζ0i + ζ1iTIMEij + εij

εij ∼ N (0, σ2ε) and
[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ20 σ01
σ10 σ21

])
• Describes the unconditional initial status and rate of change for the population.
• γ00 + ζ0i represents the interindividual initial status
• γ10 + ζ1i represents the interindividual rate of change
• σ2ε summarizes each person’s data around his/her linear change trajectory
• σ20 and σ20 summarize between-person variability in initial status and rates of change.



The Unconditional Growth Model Graphically
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Pseudo R2– Understanding the e�ect of TIME

σ2
εModel1

− σ2
εModel2

σ2
εModel1

=
0.562− 0.337

0.562
= 0.4004

• 40% of the with-in person variation in ALCUSE is systematically associated with linear
TIME.



The Unconditional Growth Model Covariance

[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

])

ρ̂π0π1 = ρ̂01 =
σ01√
σ2
0 σ

2
0
=

−0.068√
(0.624)(0.151)

= −0.22

• The linear relationship between ALCUSE at age 14, γ00 and rate of change in ALCUSE
between age 14 and 16, γ10 is weakly negative.



A Taxonomy Of Statistical Models

• A taxonomy of models is a “systematic sequence of models that, as a set, address
your research question” (Singer & Wille�, 2003, p. 105).

• Distinguish between control predictors and question predictors.
• In our example, we will assume our research questions focuses on COA.
• PEER is used as a control.



The Uncontrolled E�ects of COA

Yij =π0i + π1iTIMEij + εij

π0i = γ00 + γ01COAi + ζ0i

π1i = γ10 + γ10COAi + ζ1i

Yij = γ00 + γ01COAi + γ10TIMEij + γ10(TIMEijCOAi) + ζ0i + ζ1iTIMEij + εij

εij ∼ N (0, σ2ε) and
[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ20 σ01
σ10 σ21

])
• γ01 describes the di�erence in the level of ALCUSE at age 14 for children with and without

alcoholic parents.
• γ11 describes the impact of COA on the rate of change in ALCUSE between ages 14 and 16.



The Uncontrolled E�ects of COA

Model 1 Model 2 Model 3 Model 4 Model 5

Fixed E�ects
γ00, Initial status 0.922 0.651 0.316 −0.317 −0.314

(0.096) (0.105) (0.131) (0.148) (0.146)
γ01, COA 1.88 0.743 0.579 0.571

(0.195) (0.162) (0.146)
γ02, PEER 0.694 0.695

(0.112) (0.111)
γ10, Rate of change 0.271 0.293 0.429 0.425

(0.062) (0.084) (0.114) (0.106)
γ11, COA −0.049 0.014

0.125 (0.125)
γ12, PEER −0.150 −0.151

(0.086) (0.085)
Variance Components

σ2
ε 0.562 0.337 0.337 0.337 0.337
σ2
0 0.564 0.624 0.488 0.241 0.241
σ2
1 0.151 0.151 0.139 0.139
σ01 −0.068 −0.059 −0.006 −0.006



The Uncontrolled E�ects of COA Graphically
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The Uncontrolled E�ects of COA

Model 1 Model 2 Model 3 Model 4 Model 5

Pseudo R2 Statistics
R2ε 0.400 0.000 0.000 0.000
R20 0.219 0.501 0.000
R21 0.004 0.076 0.000

Goodness-of-fit
Deviance 670.156 636.611 621.203 588.691 588.703
df 3 6 8 10 9
BIC 686.672 669.643 665.245 643.744 638.251



Comparing Models Using Deviance Statistics

• Comparing models using deviance statistics is a more robust approach than using single
parameter tests

1 Superior statistical properties.
2 Permits composite tests on several parameters.
3 “Reserves the reservoir of Type I error” (Singer & Wille�, 2003, p. 116).

• FML tests all parameters while REML tests only variance components.

Deviance = −2[`current model − `saturated model]

• ` is the log-likelihood, a byproduct of ML estimation–the larger the ` (closer to 0) the be�er
the fit.
• The saturated model is a general mode that fits the data perfectly.
• Deviance quantifies how much worse the current model fits the data compared to the best

possible model.



Comparing Models Using Deviance Statistics

Deviance = −2[`current model − `saturated model]

= −2[`current model − 0]
= −2`current model

• `saturated model = 0 because the probability that the model will perfectly fit the data is 1
(log(1) = 0).
• −2 because standard normal theory assumptions say that comparing nested models has a

known distribution.



Comparing Models Using Deviance Statistics

Deviance-based Hypothesis Tests:
• Data set must be unchanged across models.
• The former model must be nested within the la�er model.
• Compute the number of additional constraints imposed.
• ∆D is distributed asymptotically as a χ2 distribution. with d.f . = the number of

independent constraints imposed.

∆D = DevianceReduced Model − DevianceFull Model

∆D = DevianceModel 2 − DevianceModel 3

= 636.611− 621.203 = 15.408

15.408 exceeds the χ2 .001 critical value at 2 d.f . (13.816), allowing us to reject the null
hypothesis that γ01 and γ11 are simultaneously 0.



The Controlled E�ects of COA

Yij =γ00 + γ01COAi + γ02PEERi + γ10TIMEij+

γ11(TIMEijCOAi) + γ12(TIMEijPEERi) + ζ0i + ζ1iTIMEij + εij

εij ∼ N (0, σ2ε) and
[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ20 σ01
σ10 σ21

])
• γ02 describes the impact of peer alcohol use on the level of ALCUSE at age 14 for children,

controlling for COA.
• γ12 describes the impact of peer alcohol use on the rate of change in ALCUSE between ages

14 and 16, controlling for COA..



The Controlled E�ects of COA

Model 1 Model 2 Model 3 Model 4 Model 5

Fixed E�ects
γ00, Initial status 0.922 0.651 0.316 −0.317 −0.314

(0.096) (0.105) (0.131) (0.148) (0.146)
γ01, COA 1.88 0.743 0.579 0.571

(0.195) (0.162) (0.146)
γ02, PEER 0.694 0.695

(0.112) (0.111)
γ10, Rate of change 0.271 0.293 0.429 0.425

(0.062) (0.084) (0.114) (0.106)
γ11, COA −0.049 0.014

0.125 (0.125)
γ12, PEER −0.150 −0.151

(0.086) (0.085)
Variance Components

σ2
ε 0.562 0.337 0.337 0.337 0.337
σ2
0 0.564 0.624 0.488 0.241 0.241
σ2
1 0.151 0.151 0.139 0.139
σ01 −0.068 −0.059 −0.006 −0.006



The Controlled E�ects of COA

Model 1 Model 2 Model 3 Model 4 Model 5

Pseudo R2 Statistics
R2ε 0.400 0.000 0.000 0.000
R20 0.219 0.501 0.000
R21 0.004 0.076 0.000

Goodness-of-fit
Deviance 670.156 636.611 621.203 588.691 588.703
df 3 6 8 10 9
BIC 686.672 669.643 665.245 643.744 638.251



Final Model for Controlled E�ects of COA

Yij =γ00 + γ01COAi + γ02PEERi + γ10TIMEij+

γ12(TIMEijPEERi) + ζ0i + ζ1iTIMEij + εij

εij ∼ N (0, σ2ε) and
[
ζ0i
ζ1i

]
∼ N

([0
0

]
,

[
σ20 σ01
σ10 σ21

])



The Controlled E�ects of COA

Model 1 Model 2 Model 3 Model 4 Model 5

Fixed E�ects
γ00, Initial status 0.922 0.651 0.316 −0.317 −0.314

(0.096) (0.105) (0.131) (0.148) (0.146)
γ01, COA 1.88 0.743 0.579 0.571

(0.195) (0.162) (0.146)
γ02, PEER 0.694 0.695

(0.112) (0.111)
γ10, Rate of change 0.271 0.293 0.429 0.425

(0.062) (0.084) (0.114) (0.106)
γ11, COA −0.049 0.014

0.125 (0.125)
γ12, PEER −0.150 −0.151

(0.086) (0.085)
Variance Components

σ2
ε 0.562 0.337 0.337 0.337 0.337
σ2
0 0.564 0.624 0.488 0.241 0.241
σ2
1 0.151 0.151 0.139 0.139
σ01 −0.068 −0.059 −0.006 −0.006



The Controlled E�ects of COA Graphically
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The Controlled E�ects of COA

Model 1 Model 2 Model 3 Model 4 Model 5

Pseudo R2 Statistics
R2ε 0.400 0.000 0.000 0.000
R20 0.219 0.501 0.000
R21 0.004 0.076 0.000

Goodness-of-fit
Deviance 670.156 636.611 621.203 588.691 588.703
df 3 6 8 10 9
BIC 686.672 669.643 665.245 643.744 638.251



Deviance Tests When Model Trimming

∆D = DevianceReduced Model − DevianceFull Model

∆D = DevianceModel 5 − DevianceModel 4

= 588.703− 588.691 = 0.012

0.012 does not exceed the χ2 .001 critical value at 1 d.f . (3.841). We are unable to reject the null
hypothesis that γ11 is 0.



For Further Study

Hedeker, D. & Gibbons, R.D., (2006) Longitudinal Data Analysis. Hoboken, Wiley.

Singer, J. & Wille�, J. (2003) Applied Longitudinal Analysis. New York, Oxford University Press.

Skrondal, A. & Rabe-Hesketh, S. (2004) Generalized Latent Variable Modeling. Boca Raton,
Chapman & Hall/CRC.



Thank you!
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