Multilevel Models for Longitudinal Data Track 1

Tyler H. Matta

July 6, 2021

Longitudinal Data Structure

- Person-level dataset [multivariate, wide-dataset]
 - Each subject has one row [or record]
 - Repeated measures appear as additional variables
 - No explicit "time" variable
- Person-period dataset [univariate, long-dataset]
 - A subject identifier
 - A time indicator
 - Outcome variable[s]
 - Predictor variable[s]

Data comes from the National Youth Survey (Raudenbush & Chan, 1992)

Five waves, ages 11 - 15

- TOL, Tolerance of deviant behavior (1 = very wrong, 4 = not wrong at all)
- MALE, 1 for male, 0 for female
- EXP, self reported exposure to deviant behavior at age 11 (0 =none, 4 =all).

"Person-level" Data Set

ID	TOL11	TOL12	TOL13	TOL14	TOL15	MALE	EXP
9	2.23	1.79	1.90	2.12	2.66	0	1.54
45	1.12	1.45	1.45	1.45	1.99	1	1.16
268	1.45	1.34	1.99	1.79	1.34	1	0.90
314	1.22	1.22	1.55	1.12	1.12	0	0.81
442	1.45	1.99	1.45	1.67	1.90	0	1.13
514	1.34	1.67	2.23	2.12	2.44	1	0.90
569	1.79	1.90	1.90	1.99	1.99	0	1.99
624	1.12	1.12	1.22	1.12	1.22	1	0.98
723	1.22	1.34	1.12	1.00	1.12	0	0.81
918	1.00	1.00	1.22	1.99	1.22	0	1.21
949	1.99	1.55	1.12	1.45	1.55	1	0.93
978	1.22	1.34	2.12	3.46	3.32	1	1.59
1105	1.34	1.90	1.99	1.90	2.12	1	1.38
1542	1.22	1.22	1.99	1.79	2.12	0	1.44
1552	1.00	1.12	2.23	1.55	1.55	0	1.04
1653	1.11	1.11	1.34	1.55	2.12	0	1.25

"Person-period" Data Set

ID MALE EXP AGE TOL 9 0 1.54 11 2.23 9 0 1.54 12 1.79 9 0 1.54 13 1.90 9 0 1.54 14 2.12 9 0 1.54 15 2.66 45 1 1.16 11 1.12 45 1 1.16 12 1.45 45 1 1.16 13 1.45 45 1 1.16 14 1.45 45 1 1.16 15 1.99 					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ID	MALE	EXP	AGE	TOL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0	1.54	11	2.23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0	1.54	12	1.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0	1.54	13	1.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0	1.54	14	2.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0	1.54	15	2.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	1.16	11	1.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	1.16	12	1.45
45 1 1.16 15 1.99 .	45	1	1.16	13	1.45
. .	45	1	1.16	14	1.45
. .	45	1	1.16	15	1.99
165301.25121.11165301.25131.34					
165301.25121.11165301.25131.34	•	•	•	•	•
1653 0 1.25 13 1.34	1653	0	1.25	11	1.11
	1653	0	1.25	12	1.11
1653 0 1.25 14 1.55	1653	0	1.25	13	1.34
1000 0 1120 11 1100	1653	0	1.25	14	1.55
1653 0 1.25 15 2.12	1653	0	1.25	15	2.12

Exploring Longitudinal Data

Exploring Longitudinal Data: Non-parametric Summaries

Exploring Longitudinal Data: Fitted OLS Trajectories

Exploring Longitudinal Data

Exploring Longitudinal Data, by Male/Female

Exploring Longitudinal Data, by Exposure (High > 1.145)

The Multilevel Model for Change

The first example is limited to:

- Linear change model
- Time-structured data set
- Evaluation of one time-invariant dichotomous predictor

- Data comes from Burchinal et al. (1997)
- 103 African-American infants born into low-income families
- At 6 months old, approximately half the sample (n = 53) were randomly assigned to participate in an intensive early intervention program designed to enhance cognitive functioning
- The remaining children (n = 45) were assigned to a control group
- Infants assessed 12 times between ages 6 and 96 months

- 3 waves of data-each child has three records
- AGE (in years) is the child's age at each assessment (1, 1.5, or 2)
- *COG* is the child's cognitive performance score at each assessment
- *PROGRAM* is a dichotomous covariate, 1= treatment and 0= control

Example Data

_			
ID	COG	AGE	PROGRAM
68	103	1.0	1
68	119	1.5	1
68	96	2.0	1
70	106	1.0	1
70	107	1.5	1
70	96	2.0	1
•	•	•	
984	106	1.0	0
984	89	1.5	0
984	99	2.0	0
985	112	1.0	0
985	96	1.5	0
985	88	2.0	0

Empirical Growth Plots: Fitted OLS Trajectories

The Multilevel Model for Change

$$Y_{ij} = \pi_{0i} + \pi_{1i}(AGE_{ij} - 1) + \epsilon_{ij}$$

$$\pi_{0i} = \gamma_{00} + \gamma_{01}(PROGRAM_i) + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{11}(PROGRAM_i) + \zeta_{1i},$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_1^2 \end{bmatrix} \right)$$

- The Level-1 Submodel
 - Describes how each person changes over time
 - Research questions about within-person change
- The Level-2 Submodel
 - Describes how these changes differ across people.
 - Research questions about between-person change

$$Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]$$

- Y_{ij} represents the value of *COG* for child *i* at time *j*
 - *i* runs from 1 to 103
 - *j* runs from 1 to 3
- Brackets distinguish between the structural part and the stochastic part of the model
 - The structural part parallels the concept of "true score"
 - The stochastic part parallels the concept of "measurement error"

 $Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]$

Our hypothesis about the shape of each subject's true trajectory of change over time

- π_{0i} represents child *i*'s true initial cognitive performance (at age 1).
 - π_{01} is the intercept for child 1
 - π_{02} is the intercept for child 2
- π_{1i} represents the slope of the postulated individual change trajectory
 - If π_{1i} is positive, subject *i*'s outcome increases over time

The Stochastic Part of the Level-1 Submodel

$$Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]$$

- ϵ_{ij} represents the effect of random error associated with individual *i* at time *j*
- ϵ_{ij} is unobserved so we must make assumptions about the distribution of level 1 residuals from occasion to occasion and from person to person.

The Stochastic Part of the Level-1 Submodel

$$\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$$

- "Classical" assumptions specify residuals as independently and identically distributed ("iid"), with homoscedastic variance across occasions and individuals.
- Classical assumptions may not hold with longitudinal data as residuals may be autocorrelated and heteroscedastic over time.

 $\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$ $\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$

- π_{0i} and π_{1i} represents the level-1 change parameters-initial status and linear growth
- Brackets distinguish between the structural part and the stochastic part of the model
 - The structural part parallels the concept of "true score"
 - The stochastic part parallels the concept of "measurement error"

The Structural Part of the Level-2 Submodel

 $\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$ $\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$

- γ s represent the level-2 regression parameters-known as *fixed effects*
- Fixed effects capture inter individual differences in the true change trajectory
- Interpret fixed effects as a *prototypical individual*:
 - γ_{00} represents the *average initial status* for children not enrolled in the treatment (*PROGRAM* = 0)
 - γ_{10} represents the *average annual growth* for children not enrolled in the treatment (*PROGRAM* = 0)
 - $\gamma_{00} + \gamma_{01}$ represents the *average initial status* for children enrolled in the treatment (*PROGRAM* = 1)
 - $\gamma_{10} + \gamma_{11}$ represents the *average annual growth* for children enrolled in the treatment (*PROGRAM* = 1)

The Stochastic Part of the Level-2 Submodel

$$\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$$

$$\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$$

- ζ represent the residuals–what remained *unexplained by the fixed effects*
- Less interested in values of ζ than in the population summaries of the variances σ_0^2 and σ_1^2 , and covariance σ^2

The Stochastic Part of the Level-2 Submodel

$$egin{split} \zeta_{0i} \ \zeta_{1i} \end{bmatrix} \sim N\Big(egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} \sigma_0^2 & \sigma_{01} \ \sigma_{10} & \sigma_1^2 \end{bmatrix} \Big) \end{split}$$

Standard assumption about the level-2 residuals:

- Bivariate normal distribution
- Mean of zero
- Unknown variance and covariance parameters

Model Results

	Parameter	Estimate	ase	95% CI
Fixed Effects				
π_{0i} , Initial status	γ_{00} , Intercept	107.84	2.04	$\left[103.85, 111.83 ight]$
	γ_{01} , PROGRAM	6.86	1.88	[1.54, 12.17]
π_{0i} , Rate of change	γ_{10} , Intercept	-21.13	1.88	$\left[-24.83,-17.44 ight]$
	γ_{11} , PROGRAM	5.27	2.51	[0.35, 10.19]
Variance Components				
Level 1:	σ_{ϵ}^2	74.76		
Level 2:	σ_0^2	123.97		
	σ_1^2	10.10		
	σ_{01}	-35.38		

Interpreting Fixed Effects

 $\hat{\pi}_{0i} = 107.84 + 6.86(PROGRAM_i)$ $\hat{\pi}_{1i} = -21.13 + 5.27(PROGRAM_i)$

- 107.84 = Initial status (COG at age=1) for the average nonparticipant
- 6.86 = Difference in initial status for the average *participant*
- -21.13 = Annual rate of change for the average *nonparticipant*
- 5.27 = Difference in annual rate of change for the average *participant*

Fitted Change Trajectories in COG

Testing the statistical significance of fixed effects is similar to multiple regression where $H_0: \gamma = 0$ and $H_1: \gamma \neq 0$

Test this hypothesis for each fixed effect by computing a z-statistic:

$$z = rac{\hat{\gamma}}{ase(\hat{\gamma})}$$

Interpreting Variance Components

$$\sigma_{\epsilon}^{2} = 74.76$$

$$\begin{bmatrix} \sigma_{0}^{2} & \sigma_{01} \\ \sigma_{10} & \sigma_{1}^{2} \end{bmatrix} = \begin{bmatrix} 123.97 & -35.38 \\ -35.38 & 10.10 \end{bmatrix}$$

- Level-1 residual variance, σ_{ϵ}^2 , summarizes within-person variability
- Level-2 variance components summarize between-person variability in change trajectories
- Single-parameter tests of significance for variance components can be highly inconsistent

Extending the Multilevel Model for Change

Extending the Multilevel Model for Change

- The composite formulation
- Unconditional means model and unconditional growth model
- Model building strategies

Adolescent Alcohol Use Data

- Curran, Stice, and Chassin (1997) collected 3 waves of data
- Time-structured data set of 82 adolescents beginning at age 14.
 - ALCUSE, the level of alcohol consumption during the previous year
 - AGE, the age of the child at the time of data collection
 - *PEER*, a measure of alcohol use among the adolescent's peers
 - *COA*, a dichotomous covariate, indicating if the adolescent is a child of an alcoholic (1=yes, 0=no)

ALCUSE and PEER are generated by computing the square root of the sum of the participants' responses across each variable's constituent items.

Composite Specification of the Multilevel Model for Change

$$Y_{ij} = \pi_{0i} + \pi_{1i} TIME_{ij} + \epsilon_{ij}$$

$$\pi_{0i} = \gamma_{00} + \gamma_{01} COA_i + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{11} COA_i + \zeta_{1i}$$

$$Y_{ij} = \pi_{0i} + \pi_{1i} TIME_{ij} + \epsilon_{ij}$$

= $(\gamma_{00} + \gamma_{01}COA_i + \zeta_{0i}) + (\gamma_{10} + \gamma_{11}COA_i + \zeta_{1i})TIME_{ij} + \epsilon_{ij}$
= $\gamma_{00} + \gamma_{10}TIME_{ij} + \gamma_{01}COA_i + \gamma_{11}(COA_i \times TIME_{ij}) + \zeta_{0i} + \zeta_{1i}TIME_{ij} + \epsilon_{ij}$

The Unconditional Means Model

$$Y_{ij} = \gamma_{00} + \zeta_{0i} + \epsilon_{ij}$$

 $\epsilon_{ij} \sim N(0,\sigma_{\epsilon}^2)$ and $\zeta_{0i} \sim N(0,\sigma_0^2)$

- Describes and partitions the outcome *variation*.
- Assumes the true individual change trajectory for person *i* is flat, sitting at elevation $\gamma_{00} + \zeta_{0i}$, or π_{0i} .
- Average (grand mean) elevation, across everyone, is γ_{00} .
- Partions the total outcome variation by within-person, σ_{ϵ}^2 and between-person, σ_0^2 .

Model Results

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
$\gamma_{00},$ Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
γ_{01} , COA		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
γ_{02} , PEER				0.694	0.695
				(0.112)	(0.111)
$\gamma_{10},$ Rate of change		0.271	0.293	0.429	0.425
		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11}, COA			-0.049	0.014	
			0.125	(0.125)	
$\gamma_{12}, PEER$				-0.150	-0.151
				(0.086)	(0.085)
Variance Components				. ,	. ,
σ_{ϵ}^2	0.562	0.337	0.337	0.337	0.337
$\sigma_{\epsilon}^{2} \sigma_{0}^{2} \sigma_{1}^{2} \sigma^{2}$	0.564	0.624	0.488	0.241	0.241
σ_1^2		0.151	0.151	0.139	0.139
σ^{2}		-0.068	-0.059	-0.006	-0.006

The Intraclass Correlation Coefficient, ICC

$$\rho = \frac{\sigma_0^2}{\sigma_0^2 + \sigma_\epsilon^2}$$
$$= \frac{0.564}{0.562 + 0.564} = \frac{0.564}{1.126} = 0.501$$

- Describes the proportion of total variance that lies between people.
- Also know as the *error autocorrelation coefficient*.

The Unconditional Growth Model

$$Y_{ij} = \gamma_{00} + \gamma_{10} TIME_{ij} + \zeta_{0i} + \zeta_{1i} TIME_{ij} + \epsilon_{ij}$$

 $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\right)$

- Describes the unconditional initial status and rate of change for the population.
- $\gamma_{00} + \zeta_{0i}$ represents the interindividual initial status
- $\gamma_{10} + \zeta_{1i}$ represents the interindividual rate of change
- σ_{ϵ}^2 summarizes each person's data around his/her linear change trajectory
- σ_0^2 and σ_0^2 summarize between-person variability in initial status and rates of change.

The Unconditional Growth Model Graphically

Pseudo R^2 – Understanding the effect of *TIME*

$$rac{\sigma^2_{\epsilon_{Model1}}-\sigma^2_{\epsilon_{Model2}}}{\sigma^2_{\epsilon_{Model1}}}=rac{0.562-0.337}{0.562}=0.4004$$

• 40% of the with-in person variation in *ALCUSE* is systematically associated with linear *TIME*.

The Unconditional Growth Model Covariance

$$egin{bmatrix} \zeta_{0i} \ \zeta_{1i} \end{bmatrix} \sim N\Big(egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} \sigma_0^2 & \sigma_{01} \ \sigma_{10} & \sigma_1^2 \end{bmatrix} \Big)$$

$$\hat{
ho}_{\pi_0\pi_1} = \hat{
ho}_{01} = rac{\sigma_{01}}{\sqrt{\sigma_0^2 \, \sigma_0^2}} = rac{-0.068}{\sqrt{(0.624)(0.151)}} = -0.22$$

• The linear relationship between *ALCUSE* at age 14, γ_{00} and rate of change in *ALCUSE* between age 14 and 16, γ_{10} is weakly negative.

- A *taxonomy* of models is a "systematic sequence of models that, as a set, address your research question" (Singer & Willett, 2003, p. 105).
- Distinguish between *control* predictors and *question* predictors.
 - In our example, we will assume our research questions focuses on COA.
 - *PEER* is used as a control.

$$Y_{ij} = \pi_{0i} + \pi_{1i} TIME_{ij} + \epsilon_{ij}$$

$$\pi_{0i} = \gamma_{00} + \gamma_{01} COA_i + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{10} COA_i + \zeta_{1i}$$

 $Y_{ij} = \gamma_{00} + \gamma_{01} COA_i + \gamma_{10} TIME_{ij} + \gamma_{10} (TIME_{ij} COA_i) + \zeta_{0i} + \zeta_{1i} TIME_{ij} + \epsilon_{ij}$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) ext{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix} \Big)$$

- γ_{01} describes the difference in the level of *ALCUSE* at age 14 for children with and without alcoholic parents.
- γ_{11} describes the impact of *COA* on the rate of change in *ALCUSE* between ages 14 and 16.

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
$\gamma_{00},$ Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
$\gamma_{01}, { m COA}$		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
$\gamma_{02}, PEER$				0.694	0.695
				(0.112)	(0.111)
$\gamma_{10},$ Rate of change		0.271	0.293	0.429	0.425
		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11}, COA			-0.049	0.014	
			0.125	(0.125)	
$\gamma_{12}, PEER$				-0.150	-0.151
				(0.086)	(0.085)
Variance Components				. ,	. ,
$\overline{\sigma_{\epsilon}^2}$	0.562	0.337	0.337	0.337	0.337
$\sigma^2_\epsilon \ \sigma^2_0 \ \sigma^2_1 \ \sigma^2_1$	0.564	0.624	0.488	0.241	0.241
σ_1^2		0.151	0.151	0.139	0.139
σ_{01}		-0.068	-0.059	-0.006	-0.006

The Uncontrolled Effects of COA Graphically

	Model 1	Model 2	Model 3	Model 4	Model 5
Pseudo R ² Statistics					
R_{ϵ}^2		0.400	0.000	0.000	0.000
$egin{array}{c} R_\epsilon^2 \ R_0^2 \ R_1^2 \end{array}$			0.219	0.501	0.000
R_1^2			0.004	0.076	0.000
Goodness-of-fit					
Deviance	670.156	636.611	621.203	588.691	588.703
df	3	6	8	10	9
BIC	686.672	669.643	665.245	643.744	638.251

Comparing Models Using Deviance Statistics

- Comparing models using *deviance statistics* is a more robust approach than using single parameter tests
 - 1 Superior statistical properties.
 - 2 Permits composite tests on several parameters.
 - 3 "Reserves the reservoir of Type I error" (Singer & Willett, 2003, p. 116).
- FML tests all parameters while REML tests only variance components.

$$\mathsf{Deviance} = -2[\ell_{\mathsf{current model}} - \ell_{\mathsf{saturated model}}]$$

- ℓ is the log-likelihood, a byproduct of ML estimation-the larger the ℓ (closer to 0) the better the fit.
- The saturated model is a general mode that fits the data perfectly.
- Deviance quantifies how much worse the current model fits the data compared to the best possible model.

Comparing Models Using Deviance Statistics

Deviance =
$$-2[\ell_{\text{current model}} - \ell_{\text{saturated model}}]$$

= $-2[\ell_{\text{current model}} - 0]$
= $-2\ell_{\text{current model}}$

- $\ell_{\text{saturated model}} = 0$ because the probability that the model will perfectly fit the data is 1 (log(1) = 0).
- -2 because standard normal theory assumptions say that comparing nested models has a known distribution.

Comparing Models Using Deviance Statistics

Deviance-based Hypothesis Tests:

- Data set must be unchanged across models.
- The former model must be nested within the latter model.
- Compute the number of additional constraints imposed.
- ΔD is distributed asymptotically as a χ^2 distribution. with d.f. = the number of independent constraints imposed.

 ΔD = Deviance_{Reduced Model} - Deviance_{Full Model} ΔD = Deviance_{Model 2} - Deviance_{Model 3} = 636.611 - 621.203 = 15.408

15.408 exceeds the χ^2 .001 critical value at 2 *d*.*f*. (13.816), allowing us to reject the null hypothesis that γ_{01} and γ_{11} are simultaneously 0.

$$Y_{ij} = \gamma_{00} + \gamma_{01}COA_i + \gamma_{02}PEER_i + \gamma_{10}TIME_{ij} + \gamma_{11}(TIME_{ij}COA_i) + \gamma_{12}(TIME_{ij}PEER_i) + \zeta_{0i} + \zeta_{1i}TIME_{ij} + \epsilon_{ij}$$
$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\Big)$$

- γ_{02} describes the impact of peer alcohol use on the level of *ALCUSE* at age 14 for children, controlling for *COA*.
- γ_{12} describes the impact of peer alcohol use on the rate of change in *ALCUSE* between ages 14 and 16, controlling for *COA*..

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
$\gamma_{00},$ Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
$\gamma_{01}, { m COA}$		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
$\gamma_{02}, PEER$				0.694	0.695
				(0.112)	(0.111)
$\gamma_{10},$ Rate of change		0.271	0.293	0.429	0.425
		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11}, COA			-0.049	0.014	
			0.125	(0.125)	
$\gamma_{12}, PEER$				-0.150	-0.151
				(0.086)	(0.085)
Variance Components				. ,	. ,
$\overline{\sigma_{\epsilon}^2}$	0.562	0.337	0.337	0.337	0.337
$\sigma^2_\epsilon \ \sigma^2_0 \ \sigma^2_1 \ \sigma^2_1$	0.564	0.624	0.488	0.241	0.241
σ_1^2		0.151	0.151	0.139	0.139
σ_{01}		-0.068	-0.059	-0.006	-0.006

	Model 1	Model 2	Model 3	Model 4	Model 5
Pseudo R ² Statistics					
R_{ϵ}^2		0.400	0.000	0.000	0.000
$egin{array}{c} R_\epsilon^2 \ R_0^2 \ R_1^2 \end{array}$			0.219	0.501	0.000
R_1^2			0.004	0.076	0.000
Goodness-of-fit					
Deviance	670.156	636.611	621.203	588.691	588.703
df	3	6	8	10	9
BIC	686.672	669.643	665.245	643.744	638.251

Final Model for Controlled Effects of COA

$$\begin{split} Y_{ij} = &\gamma_{00} + \gamma_{01} COA_i + \gamma_{02} PEER_i + \gamma_{10} TIME_{ij} + \\ &\gamma_{12} (TIME_{ij} PEER_i) + \zeta_{0i} + \zeta_{1i} TIME_{ij} + \epsilon_{ij} \end{split}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\Big)$$

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
$\gamma_{00},$ Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
γ_{01} , COA		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
γ_{02} , PEER				0.694	0.695
				(0.112)	(0.111)
$\gamma_{10},$ Rate of change		0.271	0.293	0.429	0.425
		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11}, COA			-0.049	0.014	
			0.125	(0.125)	
γ_{12} , PEER				-0.150	-0.151
				(0.086)	(0.085)
Variance Components				. ,	
$\sigma_{\epsilon}^2 \sigma_{0}^2 \sigma_{1}^2 \sigma_{1}^2$	0.562	0.337	0.337	0.337	0.337
$\sigma_0^{\tilde{2}}$	0.564	0.624	0.488	0.241	0.241
σ_1^2		0.151	0.151	0.139	0.139
σ_{01}		-0.068	-0.059	-0.006	-0.006

The Controlled Effects of COA Graphically

	Model 1	Model 2	Model 3	Model 4	Model 5
Pseudo R ² Statistics					
R_{ϵ}^2		0.400	0.000	0.000	0.000
$egin{array}{c} R_\epsilon^2 \ R_0^2 \ R_1^2 \end{array}$			0.219	0.501	0.000
R_1^2			0.004	0.076	0.000
Goodness-of-fit					
Deviance	670.156	636.611	621.203	588.691	588.703
df	3	6	8	10	9
BIC	686.672	669.643	665.245	643.744	638.251

Deviance Tests When Model Trimming

 $\Delta D = \text{Deviance}_{\text{Reduced Model}} - \text{Deviance}_{\text{Full Model}}$ $\Delta D = \text{Deviance}_{\text{Model 5}} - \text{Deviance}_{\text{Model 4}}$ = 588.703 - 588.691 = 0.012

0.012 does not exceed the χ^2 .001 critical value at 1 *d.f.* (3.841). We are unable to reject the null hypothesis that γ_{11} is 0.

Hedeker, D. & Gibbons, R.D., (2006) Longitudinal Data Analysis. Hoboken, Wiley.

Singer, J. & Willett, J. (2003) Applied Longitudinal Analysis. New York, Oxford University Press.

Skrondal, A. & Rabe-Hesketh, S. (2004) Generalized Latent Variable Modeling. Boca Raton, Chapman & Hall/CRC.

Thank you!