Multilevel Models for Longitudinal Data Track 1

Tyler H. Matta

July 6, 2021

Longitudinal Data Structure

- Person-level dataset [multivariate, wide-dataset]
	- Each subject has one row [or record]
	- Repeated measures appear as additional variables
	- No explicit "time" variable
- Person-period dataset [univariate, long-dataset]
	- A subject identifier
	- A time indicator
	- Outcome variable[s]
	- Predictor variable[s]

Data comes from the National Youth Survey (Raudenbush & Chan, 1992)

Five waves, ages 11 - 15

- TOL, Tolerance of deviant behavior $(1 = \text{very wrong}, 4 = \text{not wrong}$ at all)
- MALE, 1 for male, 0 for female
- EXP, self reported exposure to deviant behavior at age 11 $(0 = none, 4 = all).$

"Person-level" Data Set

"Person-period" Data Set

Exploring Longitudinal Data

Exploring Longitudinal Data: Non-parametric Summaries

Exploring Longitudinal Data: Fitted OLS Trajectories

Exploring Longitudinal Data

Exploring Longitudinal Data, by Male/Female

Exploring Longitudinal Data, by Exposure (High > 1.145)

The Multilevel Model for Change

The first example is limited to:

- Linear change model
- Time-structured data set
- Evaluation of one time-invariant dichotomous predictor
- Data comes from Burchinal et al. (1997)
- 103 African-American infants born into low-income families
- At 6 months old, approximately half the sample $(n = 53)$ were randomly assigned to participate in an intensive early intervention program designed to enhance cognitive functioning
- The remaining children ($n = 45$) were assigned to a control group
- Infants assessed 12 times between ages 6 and 96 months
- 3 waves of data–each child has three records
- AGE (in years) is the child's age at each assessment (1, 1.5, or 2)
- COG is the child's cognitive performance score at each assessment
- PROGRAM is a dichotomous covariate, 1= treatment and 0= control

Example Data

Empirical Growth Plots: Fitted OLS Trajectories

The Multilevel Model for Change

$$
Y_{ij} = \pi_{0i} + \pi_{1i}(AGE_{ij} - 1) + \epsilon_{ij}
$$

\n
$$
\pi_{0i} = \gamma_{00} + \gamma_{01}(PROGRAM_i) + \zeta_{0i}
$$

\n
$$
\pi_{1i} = \gamma_{10} + \gamma_{11}(PROGRAM_i) + \zeta_{1i},
$$

\n
$$
\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_1^2 \end{bmatrix}\right)
$$

- The Level-1 Submodel
	- Describes how each person changes over time
	- Research questions about within-person change
- The Level-2 Submodel
	- Describes how these changes differ across people.
	- Research questions about between-person change

$$
Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]
$$

- Y_{ii} represents the value of COG for child *i* at time *i*
	- i runs from 1 to 103
	- j runs from 1 to 3
- Brackets distinguish between the structural part and the stochastic part of the model
	- The structural part parallels the concept of "true score"
	- The stochastic part parallels the concept of "measurement error"

 $Y_{ii} = [\pi_{0i} + \pi_{1i}(AGE_{ii} - 1)] + [\epsilon_{ii}]$

Our hypothesis about the shape of each subject's true trajectory of change over time

- π_{0i} represents child *i*'s true initial cognitive performance (at age 1).
	- π_{01} is the intercept for child 1
	- π_{02} is the intercept for child 2
- π_{1i} represents the slope of the postulated individual change trajectory
	- If π_{1i} is positive, subject *i*'s outcome increases over time

$$
Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]
$$

- ϵ_{ij} represents the effect of random error associated with individual *i* at time *j*
- \bullet ϵ_{ij} is unobserved so we must make assumptions about the distribution of level 1 residuals from occasion to occasion and from person to person.

$$
\epsilon_{ij} \stackrel{iid}{\sim} N(0,\sigma^2_{\epsilon})
$$

- "Classical" assumptions specify residuals as independently and identically distributed ("iid"), with homoscedastic variance across occasions and individuals.
- Classical assumptions may not hold with longitudinal data as residuals may be autocorrelated and heteroscedastic over time.

 $\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$ $\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$

- π_{0i} and π_{1i} represents the level-1 change parameters–initial status and linear growth
- Brackets distinguish between the structural part and the stochastic part of the model
	- The structural part parallels the concept of "true score"
	- The stochastic part parallels the concept of "measurement error"

The Structural Part of the Level-2 Submodel

 $\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$ $\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$

- γ s represent the level-2 regression parameters–known as *fixed effects*
- Fixed effects capture inter individual differences in the true change trajectory
- Interpret fixed effects as a prototypical individual:
	- γ_{00} represents the *average initial status* for children not enrolled in the treatment $(PROGRAM = 0)$
	- γ_{10} represents the *average annual growth* for children not enrolled in the treatment $(PROGRAM = 0)$
	- $\gamma_{00} + \gamma_{01}$ represents the *average initial status* for children enrolled in the treatment $(\text{PROGRAM} = 1)$
	- $\gamma_{10} + \gamma_{11}$ represents the *average annual growth* for children enrolled in the treatment $(PROGRAM = 1)$

The Stochastic Part of the Level-2 Submodel

$$
\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]
$$

$$
\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]
$$

- ζ represent the residuals–what remained unexplained by the fixed effects
- $\bullet\,$ Less interested in values of ζ than in the population summaries of the variances σ_0^2 and $\sigma_1^2,$ and covariance σ^2

The Stochastic Part of the Level-2 Submodel

 $\sqrt{ }$

$$
\begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N \Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix} \Big)
$$

Standard assumption about the level-2 residuals:

- Bivariate normal distribution
- Mean of zero
- Unknown variance and covariance parameters

Model Results

 $\hat{\pi}_{0i} = 107.84 + 6.86 (PROGRAM_i)$ $\hat{\pi}_{1i} = -21.13 + 5.27(PROGRAM_i)$

- 107.84 = Initial status (COG at age=1) for the average nonparticipant
- 6.86 = Difference in initial status for the average participant
- -21.13 = Annual rate of change for the average nonparticipant
- 5.27 $=$ Difference in annual rate of change for the average participant

Fitted Change Trajectories in COG

Testing the statistical significance of fixed effects is similar to multiple regression where H_0 : $\gamma = 0$ and H_1 : $\gamma \neq 0$

Test this hypothesis for each fixed effect by computing a z-statistic:

$$
z=\frac{\hat{\gamma}}{a \textit{se}(\hat{\gamma})}
$$

Interpreting Variance Components

$$
\sigma_{\epsilon}^{2} = 74.76
$$

$$
\begin{bmatrix} \sigma_{0}^{2} & \sigma_{01} \\ \sigma_{10} & \sigma_{1}^{2} \end{bmatrix} = \begin{bmatrix} 123.97 & -35.38 \\ -35.38 & 10.10 \end{bmatrix}
$$

- $\bullet\,$ Level-1 residual variance, σ_ϵ^2 , summarizes within-person variability
- Level-2 variance components summarize between-person variability in change trajectories
- Single-parameter tests of significance for variance components can be highly inconsistent

Extending the Multilevel Model for Change

- The composite formulation
- Unconditional means model and unconditional growth model
- Model building strategies
- Curran, Stice, and Chassin (1997) collected 3 waves of data
- Time-structured data set of 82 adolescents beginning at age 14.
	- ALCUSE, the level of alcohol consumption during the *previous* year
	- AGE, the age of the child at the time of data collection
	- PEER, a measure of alcohol use among the adolescent's peers
	- COA, a dichotomous covariate, indicating if the adolescent is a child of an alcoholic (1=yes, $0=no$

ALCUSE and PEER are generated by computing the square root of the sum of the participants' responses across each variable's constituent items.

Composite Specification of the Multilevel Model for Change

$$
Y_{ij} = \pi_{0i} + \pi_{1i} \text{TIME}_{ij} + \epsilon_{ij}
$$

$$
\pi_{0i} = \gamma_{00} + \gamma_{01} \text{COA}_{i} + \zeta_{0i}
$$

$$
\pi_{1i} = \gamma_{10} + \gamma_{11} \text{COA}_{i} + \zeta_{1i}
$$

$$
Y_{ij} = \pi_{0i} + \pi_{1i} \text{TIME}_{ij} + \epsilon_{ij}
$$

= $(\gamma_{00} + \gamma_{01} COA_i + \zeta_{0i}) + (\gamma_{10} + \gamma_{11} COA_i + \zeta_{1i}) \text{TIME}_{ij} + \epsilon_{ij}$
= $\gamma_{00} + \gamma_{10} \text{ TIME}_{ij} + \gamma_{01} COA_i + \gamma_{11} (COA_i \times \text{TIME}_{ij}) + \zeta_{0i} + \zeta_{1i} \text{ TIME}_{ij} + \epsilon_{ij}$

The Unconditional Means Model

$$
Y_{ij} = \gamma_{00} + \zeta_{0i} + \epsilon_{ij}
$$

 $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$ and $\zeta_{0i} \sim N(0, \sigma_0^2)$

- Describes and partitions the outcome variation.
- Assumes the true individual change trajectory for person i is flat, sitting at elevation $\gamma_{00}+\zeta_{0i}$, or $\pi_{0i}.$
- Average (grand mean) elevation, across everyone, is γ_{00} .
- \bullet Partions the total outcome variation by within-person, σ_ϵ^2 and between-person, σ_0^2 .

Model Results

The Intraclass Correlation Coefficient, ICC

$$
\rho = \frac{\sigma_0^2}{\sigma_0^2 + \sigma_\epsilon^2}
$$

=
$$
\frac{0.564}{0.562 + 0.564} = \frac{0.564}{1.126} = 0.501
$$

- Describes the proportion of total variance that lies between people.
- \bullet Also know as the error autocorrelation coefficient.

The Unconditional Growth Model

$$
Y_{ij} = \gamma_{00} + \gamma_{10} \text{TIME}_{ij} + \zeta_{0i} + \zeta_{1i} \text{TIME}_{ij} + \epsilon_{ij}
$$
\n
$$
\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\Big)
$$

- Describes the unconditional initial status and rate of change for the population.
- $\gamma_{00} + \zeta_{0i}$ represents the interindividual initial status
- $\gamma_{10} + \zeta_{1i}$ represents the interindividual rate of change
- \bullet σ_{ϵ}^2 summarizes each person's data around his/her linear change trajectory
- \bullet σ_0^2 and σ_0^2 summarize between-person variability in initial status and rates of change.

The Unconditional Growth Model Graphically

Pseudo R^2 - Understanding the effect of TIME

$$
\frac{\sigma_{\epsilon_{Model1}}^2 - \sigma_{\epsilon_{Model2}}^2}{\sigma_{\epsilon_{Model1}}^2} = \frac{0.562 - 0.337}{0.562} = 0.4004
$$

• 40% of the with-in person variation in ALCUSE is systematically associated with linear TIME.

The Unconditional Growth Model Covariance

$$
\begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix} \Big)
$$

$$
\hat{\rho}_{\pi_0\pi_1}=\hat{\rho}_{01}=\frac{\sigma_{01}}{\sqrt{\sigma^2_0\,\sigma^2_0}}=\frac{-0.068}{\sqrt{(0.624)(0.151)}}=-0.22
$$

• The linear relationship between ALCUSE at age 14, γ_{00} and rate of change in ALCUSE between age 14 and 16, γ_{10} is weakly negative.

- A taxonomy of models is a "systematic sequence of models that, as a set, address your research question" (Singer & Willett, 2003, p. 105).
- Distinguish between control predictors and question predictors.
	- In our example, we will assume our research questions focuses on COA.
	- *PEER* is used as a control.

The Uncontrolled Effects of COA

$$
Y_{ij} = \pi_{0i} + \pi_{1i} \text{TIME}_{ij} + \epsilon_{ij}
$$

$$
\pi_{0i} = \gamma_{00} + \gamma_{01} \text{COA}_{i} + \zeta_{0i}
$$

$$
\pi_{1i} = \gamma_{10} + \gamma_{10} \text{COA}_{i} + \zeta_{1i}
$$

$$
Y_{ij} = \gamma_{00} + \gamma_{01} \text{COA}_{i} + \gamma_{10} \text{TIME}_{ij} + \gamma_{10} (\text{TIME}_{ij} \text{COA}_{i}) + \zeta_{0i} + \zeta_{1i} \text{TIME}_{ij} + \epsilon_{ij}
$$

$$
\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\Big)
$$

- γ_{01} describes the difference in the level of ALCUSE at age 14 for children with and without alcoholic parents.
- γ_{11} describes the impact of COA on the rate of change in ALCUSE between ages 14 and 16.

The Uncontrolled Effects of COA

The Uncontrolled Effects of COA Graphically

The Uncontrolled Effects of COA

Comparing Models Using Deviance Statistics

- Comparing models using *deviance statistics* is a more robust approach than using single parameter tests
	- 1 Superior statistical properties.
	- 2 Permits composite tests on several parameters.
	- 3 "Reserves the reservoir of Type I error" (Singer & Willett, 2003, p. 116).
- FML tests all parameters while REML tests only variance components.

$$
Deviance = -2[\ell_{current \ model} - \ell_{saturated \ model}]
$$

- ℓ is the log-likelihood, a byproduct of ML estimation–the larger the ℓ (closer to 0) the better the fit.
- The saturated model is a general mode that fits the data perfectly.
- Deviance quantifies how much worse the current model fits the data compared to the best possible model.

Comparing Models Using Deviance Statistics

$$
\begin{aligned} \text{Deviance} &= -2[\ell_{\text{current model}} - \ell_{\text{saturated model}}] \\ &= -2[\ell_{\text{current model}} - 0] \\ &= -2\ell_{\text{current model}} \end{aligned}
$$

- $\ell_{\text{saturated model}} = 0$ because the probability that the model will perfectly fit the data is 1 $(log(1) = 0)$.
- −2 because standard normal theory assumptions say that comparing nested models has a known distribution.

Comparing Models Using Deviance Statistics

Deviance-based Hypothesis Tests:

- Data set must be unchanged across models.
- \bullet The former model must be nested within the latter model.
- Compute the number of additional constraints imposed.
- $\bullet \;\, \Delta D$ is distributed asymptotically as a χ^2 distribution. with $d.f. =$ the number of independent constraints imposed.

 ΔD = Deviance_{Reduced Model} – Deviance_{Full Model} ΔD = Deviance_{Model} 2 – Deviance_{Model} 3 $= 636.611 - 621.203 = 15.408$

15.408 exceeds the χ^2 .001 critical value at 2 d.f. (13.816), allowing us to reject the null hypothesis that γ_{01} and γ_{11} are simultaneously 0.

The Controlled Effects of COA

$$
Y_{ij} = \gamma_{00} + \gamma_{01} COA_i + \gamma_{02} P E E R_i + \gamma_{10} TIME_{ij} +
$$

\n
$$
\gamma_{11} (TIME_{ij} COA_i) + \gamma_{12} (TIME_{ij} P E E R_i) + \zeta_{0i} + \zeta_{1i} TIME_{ij} + \epsilon_{ij}
$$

\n
$$
\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\Big)
$$

- γ_{02} describes the impact of peer alcohol use on the level of ALCUSE at age 14 for children, controlling for COA.
- γ_{12} describes the impact of peer alcohol use on the rate of change in ALCUSE between ages 14 and 16, controlling for COA..

The Controlled Effects of COA

Final Model for Controlled Effects of COA

$$
Y_{ij} = \gamma_{00} + \gamma_{01} COA_i + \gamma_{02} P E E R_i + \gamma_{10} TIME_{ij} +
$$

$$
\gamma_{12} (TIME_{ij} P E E R_i) + \zeta_{0i} + \zeta_{1i} TIME_{ij} + \epsilon_{ij}
$$

$$
\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\Big)
$$

The Controlled Effects of COA

The Controlled Effects of COA Graphically

Deviance Tests When Model Trimming

 ΔD = Deviance_{Reduced Model} – Deviance_{Full Model} ΔD = Deviance_{Model 5} – Deviance_{Model 4} $= 588.703 - 588.691 = 0.012$

0.012 does not exceed the χ^2 .001 critical value at 1 $d.f.$ (3.841). We are unable to reject the null hypothesis that γ_{11} is 0.

Hedeker, D. & Gibbons, R.D., (2006) Longitudinal Data Analysis. Hoboken, Wiley.

Singer, J. & Willett, J. (2003) Applied Longitudinal Analysis. New York, Oxford University Press.

Skrondal, A. & Rabe-Hesketh, S. (2004) Generalized Latent Variable Modeling. Boca Raton, Chapman & Hall/CRC.

Thank you!